DOI QR코드

DOI QR Code

Refinement Behavior of Coarse Magnesium Powder by High Energy Ball Milling (HEBM)

고에너지 밀링공정을 이용한 조대 마그네슘 분말의 미세화 거동

  • Song, Joon-Woo (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Kim, Hyo-Seob (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University) ;
  • Kim, Hong-Moule (Hana Industries Co., Ltd.) ;
  • Kim, Taek-Soo (Dept. Of Echo-materials and processing, Korea Institute of Industrial Technology (KITECH)) ;
  • Hong, Soon-Jik (Division of Advanced Materials Engineering & Institute for Rare Metals, Kongju National University)
  • 송준우 (공주대학교 신소재공학부 및 희소금속 연구소) ;
  • 김효섭 (공주대학교 신소재공학부 및 희소금속 연구소) ;
  • 김홍물 ((주)하나산업) ;
  • 김택수 (한국생산기술연구원) ;
  • 홍순직 (공주대학교 신소재공학부 및 희소금속 연구소)
  • Received : 2010.07.06
  • Accepted : 2010.07.30
  • Published : 2010.08.28

Abstract

In this research, the refinement behavior of the coarse magnesium powders fabricated by gas atomization was investigated as a function of milling time using a short duration high-energy ball milling equipment, which produces fine powders by means of an ultra high-energy within a short duration. The microstructure, hardness, and formability of the powders were investigated as a function of milling time using X-ray diffraction, scanning electron microscopy, Vickers micro-hardness tester and magnetic pulsed compaction. The particle morphology of Mg powders changed from spherical particles of feed metals to irregular oval particles, then platetype particles, with increasing milling time. Due to having HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, resulting in producing plate-type powders. With increasing milling time, the particle size increased until 5 minutes, then decreased gradually reaching a uniform size of about 50 micrometer after 20 minutes. The relative density of the initial power was 98% before milling, and mechanically milled powder was 92~94% with increase milling time (1~5 min) then it increased to 99% after milling for 20 minutes because of the change in particle shapes.

Keywords

References

  1. B. L. Mordike and T. Ebert: Mater. Sci. Eng. A 302 (2001) 37. https://doi.org/10.1016/S0921-5093(00)01351-4
  2. S. W. Lim, T. Imai, Y. Nishida and T. Cho: Scripta. Metall. 32 (1995) 1713. https://doi.org/10.1016/0956-716X(95)00005-G
  3. M. A. Thein, L. Lu and M.O. Lai: J. Mater. Process. Technol., 209 (2009) 4439. https://doi.org/10.1016/j.jmatprotec.2008.10.044
  4. B. Wolf, C. Fleck and D. Eifler: Int. J. Fatigue 26 (2004) 1357.
  5. S. Bouaricha, J. P. Dodelet, D. Guay, J. Huot, S. Boily and R. Schulz: J. Alloys Compd., 297 (2000) 282. https://doi.org/10.1016/S0925-8388(99)00612-X
  6. H. Imamura, K. Masanari, M. Kusuhara, H. Katsumoto, T. Sumi and Y. Sakata: J. Alloys Compd., 386 (2005) 211. https://doi.org/10.1016/j.jallcom.2004.04.145
  7. C. Chen, G. Zhang, W. Wang and Z. Wang: Mater. Sci. Eng. A 272 (1999) 363. https://doi.org/10.1016/S0921-5093(99)00503-1
  8. M. O. Lai, L. Lu and W. Laing: Comp. Struct., 66 (2004) 301. https://doi.org/10.1016/j.compstruct.2004.04.052
  9. T. Yamasaki, Y. J. Zheng, Y. Ogino, M. Terasawa, T. Mitamura and T. Fukami: Mater. Sci. Eng. A 350 (2003) 168. https://doi.org/10.1016/S0921-5093(02)00722-0
  10. K. I. Moon and K. S. Lee: J. Alloys Compd., 291 (1999) 312. https://doi.org/10.1016/S0925-8388(99)00299-6
  11. B. Ghosh and S. K. Pradhan: J. Alloys compd., 486 (2009) 480. https://doi.org/10.1016/j.jallcom.2009.06.170
  12. Ismail Ozdemir, Sasha Ahrens, Silke Mucklich and Bernhard Wielage: J. Mater. Process. Technol., 205 (2008) 111. https://doi.org/10.1016/j.jmatprotec.2007.11.085
  13. B. Ghosh and S. K. Pradhan: J. Alloys Compd., 477 (2009) 127. https://doi.org/10.1016/j.jallcom.2008.09.210
  14. Y. R. Uhm, J. W. Kim, J. W. Jung and C. K. Rhee: J. Kor. Powder. Metall. Inst., 16 (2009) 110 (Korean). https://doi.org/10.4150/KPMI.2009.16.2.110
  15. J. W. Song, H. S. Kim, S. S. Kim, J. M. Koo and S. J. Hong: J. Kor. Powder. Metall. Inst., 17 (2010) 242 (Korean). https://doi.org/10.4150/KPMI.2010.17.3.242
  16. M. H. Yoo: Metall. Trans. A 12 (1981) 409.
  17. H. Tonda and S. Ando: Metall. Mater. Trans. A 33 (2002) 831. https://doi.org/10.1007/s11661-002-0152-z
  18. M.-H. Grosjean, M. Zidoune, L. Roue, J. Huot and R. Schulz: Electrochim. Acta, 49 (2004) 2461. https://doi.org/10.1016/j.electacta.2004.02.001
  19. S. Hwang, C. Nishimura and P. G. McCormick: Mater. Sci. Eng. 318 (2001) 22. https://doi.org/10.1016/S0921-5093(01)01767-1
  20. G. G. Lee, Ryuzo Watanabe, I. P. Park and H. Y. Jeoung: J. Kor. Inst. Met. Mater. 33 (1995) 888. (Korean)
  21. K. Asano, H. Enoki and E. Akiba: J. Alloys Compd., 486 (2009) 115. https://doi.org/10.1016/j.jallcom.2009.06.140
  22. H. H. Hausner and M. K. Mal: Hand book of Powder Metallurgy, second edition, Chemical Publishing, NewYork, NY, 1982.

Cited by

  1. Quantitative Study on the Refinement Behaviors of TiC Powders Produced by Mechanical Milling Under Different Impact Energy vol.19, pp.1, 2012, https://doi.org/10.4150/KPMI.2012.19.1.032