References
- Baumbach, J. I. Anal. Bioanal. Chem. 2006, 384, 1059. https://doi.org/10.1007/s00216-005-3397-8
- Mendes, M. A.; Pimpim, R. S.; Kotiaho, T.; Eberlin, M. N. Anal. Chem. 1996, 68, 3502. https://doi.org/10.1021/ac9604346
- Eiceman, G. A. Trends Anal. Chem. 2002, 21, 259. https://doi.org/10.1016/S0165-9936(02)00406-5
- Kolakowski, B. M.; D’Agostino, P. A.; Chenier, C.; Mester, Z. Anal. Chem. 2007, 79, 8257. https://doi.org/10.1021/ac070816j
- Zimmermann, S.; Barth, S.; Baether, W. K. M.; Ringer, J. Anal. Chem. 2008, 80, 6671. https://doi.org/10.1021/ac800559h
- Rearden, P.; Harrington, P. B. Anal. Chim. Acta 2005, 545, 13. https://doi.org/10.1016/j.aca.2005.04.035
- Daum, K. A.; Atkinson, D. A.; Ewing, R. G. Int. J. Mass Spectrom. 2002, 214, 257. https://doi.org/10.1016/S1387-3806(01)00591-7
- Ewing, R. G.; Atkinson, D. A.; Eiceman, G. A.; Ewing, G. J. Talanta 2001, 54, 515. https://doi.org/10.1016/S0039-9140(00)00565-8
- Matz, L. M.; Tornatore, P. S.; Hill, H. H., Jr. Talanta 2001, 54, 171. https://doi.org/10.1016/S0039-9140(00)00663-9
- Kanu, A. B.; Hill, H. H., Jr. Talanta 2007, 73, 692. https://doi.org/10.1016/j.talanta.2007.04.058
- Lai, H.; Corbin, I.; Almirall, J. R. Anal. Bioanal. Chem. 2008, 392, 105. https://doi.org/10.1007/s00216-008-2229-z
- Ochoa, M. L.; Harrington, P. B. Anal. Chem. 2004, 76, 985. https://doi.org/10.1021/ac035123r
- Buryakov, I. A.; Baldin, M. N. J. Anal. Chem. 2008, 63, 787. https://doi.org/10.1134/S1061934808080133
- Guo, Y.; Wang, J.; Javahery, G.; Thomson, B. A.; Michael Siu, K. W. Anal. Chem. 2005, 77, 266. https://doi.org/10.1021/ac048974n
- Shvartsburg, A. A.; Li, F.; Tang, K.; Smith, R. D. Anal. Chem. 2006, 78, 3706. https://doi.org/10.1021/ac052020v
- Kanu, A. B.; Gribb, M. M.; Hill, H. H., Jr. Anal. Chem. 2008, 80, 6610. https://doi.org/10.1021/ac8008143
- Young, D.; Eiceman, G. A.; Breach, J.; Brittain, A. H.; Thomas, C. L. P. Anal. Chim. Acta 2002, 463, 143. https://doi.org/10.1016/S0003-2670(02)00380-X
- Gillig, K. J.; Ruotolo, B. T.; Stone, E. G.; Russell, D. H. Int. J. Mass Spectrom. 2004, 239, 43. https://doi.org/10.1016/j.ijms.2004.09.005
- Purves, R. W.; Guevremont, R.; Day, S.; W. Pipich, C.; Matyjaszczyk,M. S. Rev. Sci. Instrum. 1998, 69, 4094. https://doi.org/10.1063/1.1149255
- Lia, F.; Xiea, Z.; Schmidta, H.; Sielemannb, S.; Baumbach, J. I. Spectrochim. Acta B 2002, 57, 1563. https://doi.org/10.1016/S0584-8547(02)00110-6
- Harvey, D. J. Mass Spectrom. Rev. 1999, 18, 349. https://doi.org/10.1002/(SICI)1098-2787(1999)18:6<349::AID-MAS1>3.0.CO;2-H
- Naven, T. J. P.; Harvey, D. J. Rapid Commun. Mass Spectrom. 1996, 10, 829. https://doi.org/10.1002/(SICI)1097-0231(199605)10:7<829::AID-RCM572>3.0.CO;2-Y
- Choi, S.-S.; Ha, S.-H. Bull. Korean Chem. Soc. 2006, 27, 1243. https://doi.org/10.5012/bkcs.2006.27.8.1243
- Choi, S.-S.; Lee, H. M. Bull. Korean Chem. Soc. 2009, 30, 2806. https://doi.org/10.5012/bkcs.2009.30.11.2806
- Yuan, J.; Hashii, N.; Kawasaki, N.; Itoh, S.; Kawanishi, T.; Hayakawa, T. J. Chromatogr. A 2005, 1067, 145. https://doi.org/10.1016/j.chroma.2004.11.070
- Wan, E. C. H.; Yu, J. Z. J. Chromatogr. A 2006, 1107, 175. https://doi.org/10.1016/j.chroma.2005.12.062
- Cheng, H. L.; Her, G. R. J. Am. Soc. Mass Spectrom. 2002, 13, 1322. https://doi.org/10.1016/S1044-0305(02)00528-7
- Zhu, X.; Sato, T. Rapid Commun. Mass Spectrom. 2007, 21, 191. https://doi.org/10.1002/rcm.2825
- Choi, S.-S.; Song, M. J. Int. J. Mass Spectrom. 2009, 285, 126. https://doi.org/10.1016/j.ijms.2009.05.005
- Choi, S.-S.; Kim, J.-C. Bull. Korean Chem. Soc. 2009, 30, 1996. https://doi.org/10.5012/bkcs.2009.30.9.1996
- Choi, S.-S.; Song, M. J. Rapid Commun. Mass Spectrom. 2008, 22, 2580. https://doi.org/10.1002/rcm.3650
- Choi, S.-S.; Song, M. J. Bull. Korean Chem. Soc. 2008, 29, 1847. https://doi.org/10.5012/bkcs.2008.29.9.1847
- Choi, S.-S.; Kim, J.-C. Carbohydr. Res. 2010, 345, 408. https://doi.org/10.1016/j.carres.2009.11.028
- Choi, S.-S.; Kim, J.-C. Rapid Commun. Mass Spectrom. 2009, 23, 3969. https://doi.org/10.1002/rcm.4337
- Lu, Y.; O’Donnell, R. M.; Harrington, P. B. Foren. Sci. Int. 2009, 189, 54. https://doi.org/10.1016/j.forsciint.2009.04.007
- Dussy, F. E.; Berchtold, C.; Briellmann, T. A.; Lang, C.; Steiger, R.; Bovens, M. Foren. Sci. Int. 2008, 177, 105. https://doi.org/10.1016/j.forsciint.2007.11.005
- Lai, H.; Guerra, P.; Joshi, M,; Almirall, J. R. J. Sep. Sci. 2008, 31, 402. https://doi.org/10.1002/jssc.200700292
- Tabrizchi, M.; Khayamian, T.; Taj, N. Rev. Sci. Instrum. 2000, 71, 2321. https://doi.org/10.1063/1.1150618
- Jafari, M. T.; Khayamian, T.; Shaer, V.; Zarei, N. Anal. Chim. Acta 2007, 581, 147. https://doi.org/10.1016/j.aca.2006.08.005
- Han, H. Y.; Huang, G.-D.; Jin, S.-P.; Zheng, P.-C.; Xu, G.-H.; Li, J.-Q.; Wang, H.-M.; Chu, Y.-N. J. Env. Sci. 2007, 19, 751. https://doi.org/10.1016/S1001-0742(07)60125-9
- Skalny, J. D.; Orszagh, J.; Matejcik, S.; Mason, N. J.; Rees, J. A.; Aranda-Gonzalvo, Y.; Whitmore, T. D. Int. J. Mass Spectrom. 2008, 277, 210. https://doi.org/10.1016/j.ijms.2008.05.016
- Sheibani, A.; Tabrizchi, M.; Ghaziaskar, H. S. Talanta 2008, 75, 233.
- Borsdorf, H.; Neitsch, K.; Eiceman, G. A.; Stone, J. A. Talanta 2009, 78, 1464. https://doi.org/10.1016/j.talanta.2009.02.043
Cited by
- Analytical method for the estimation of transfer and detection efficiencies of solid state explosives using ion mobility spectrometry and smear matrix vol.9, pp.17, 2017, https://doi.org/10.1039/C7AY00529F
- Analysis of New Synthetic Drugs by Ion Mobility Time-of-Flight Mass Spectrometry vol.20, pp.2, 2014, https://doi.org/10.1255/ejms.1262
- Negative Ion Formation of Pentaerythritol Tetranitrate in Atmospheric Pressure Chemical Ionization-Mass Spectrometry and in Corona Discharge Ionization-Ion Mobility Spectrometry vol.32, pp.3, 2011, https://doi.org/10.5012/bkcs.2011.32.3.1055
- Analysis of hazardous chemicals by “stand alone” drift tube ion mobility spectrometry: a review vol.12, pp.9, 2010, https://doi.org/10.1039/c9ay02268f
- Cocaine Detection by a Laser-Induced Immunofluorometric Biosensor vol.11, pp.9, 2010, https://doi.org/10.3390/bios11090313