DOI QR코드

DOI QR Code

Kinetics and Mechanism of Pyridinolysis of Aryl Dithiocyclopentanecarboxylates in Acetonitrile

  • Oh, Hyuck-Keun (Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University)
  • Received : 2010.05.12
  • Accepted : 2010.06.10
  • Published : 2010.08.20

Abstract

Kinetic studies on the pyridinolysis of aryl dithiocyclopentanecarboxyaltes 2 were carried out at $60.0^{\circ}C$ in acetonitrile. In the aminolysis of 2, the $\beta_X$ values were 0.5 - 0.8 with anilines, and there was no breakpoint. However, in the pyridinolysis of 2, biphasic Bronsted plots were obtained, with a change in slope from a large value ($\beta_X{\cong}0.7$) to a small value ($\beta_X{\cong}0.4$) at $pK_{a}^0$ = 5.2. This was attributed to a change in the rate-limiting step from breakdown to the formation of a zwitterionic tetrahedral intermediate, $T^{\pm}$, in the reaction path, with an increase in the basicity of the pyridine nucleophile. An obvious change in the cross-interaction constant ${\rho}_{XZ}$ from a large positive ($\rho_{XZ}$ = +1.02) value to a small negative value (${\rho}_{XZ}$ = -0.17) supports the proposed mechanistic change.

Keywords

References

  1. M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Harlow, 1997; Ch. 7.
  2. Williams, A. Concerted Organic and Bio-Organic Mechanisms; CRC Press: Boca Raton, 2000; Ch. 4.
  3. Castro, E. A. Chem. Rev. 1999, 99, 3505. https://doi.org/10.1021/cr990001d
  4. Castro, E. A.; Ibanez, F.; Santos, J. G.; Ureta, C. J. Chem. Soc., Perkin Trans. 2 1991, 1919.
  5. Castro, E. A.; Ibanez, F.; Santos, J. G.; Ureta, C. J. Org. Chem. 1992, 57, 7024. https://doi.org/10.1021/jo00052a010
  6. Cabrera, M.; Castro, E. A.; Salas, M.; Santos, J. G.; Sepulveda, P. J. Org. Chem. 1991, 56, 5324. https://doi.org/10.1021/jo00018a022
  7. Castro, E. A.; Cubillos, M.; Ibanez, F.; Moraga, I.; Santos, J. G. J. Org. Chem. 1993, 58, 5400. https://doi.org/10.1021/jo00072a022
  8. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G.; Sepulveda, P. J. Org. Chem. 1993, 58, 459. https://doi.org/10.1021/jo00054a033
  9. Oh, H. K.; Shin, C. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 1169.
  10. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  11. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 2306.
  12. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313. https://doi.org/10.1039/b006974o
  13. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2001, 1753.
  14. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995. https://doi.org/10.1021/jo0264269
  15. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874. https://doi.org/10.1021/jo025637a
  16. Oh, H. K.; Shin, C. H.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 657.
  17. Jeong, K. S.; Oh, H. K. Bull. Korean Chem. Soc. 2008, 29, 675. https://doi.org/10.5012/bkcs.2008.29.3.675
  18. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  19. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  20. Lee, I.; Lee, H. W. Collec. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  21. Coetzee, J. F. Prog. Phys. Org. Chem. 1965, 4, 45.
  22. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack. C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
  23. Foroughifar, N.; Leffek. K. T.; Lee, Y. G. Can. J. Chem. 1992, 70, 2856. https://doi.org/10.1139/v92-363
  24. Lee, I.; Kim. C. K.; Han. I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302. https://doi.org/10.1021/jp991115w
  25. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963. https://doi.org/10.1021/ja00463a032
  26. Castro, E. A.; Ureta, C. J. Org. Chem. 1990, 55, 1076. https://doi.org/10.1021/jo00290a049
  27. Castro, E. A.; Araneda, C. A.; Santos, J. G. J. Org. Chem. 1997, 62, 126. https://doi.org/10.1021/jo961275t
  28. Castro, E. A. Chem. Rev. 1999, 99, 3505. https://doi.org/10.1021/cr990001d
  29. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1999, 64, 6342. https://doi.org/10.1021/jo990531+
  30. Koh, H. J.; Han, K. L.; Lee, I. J. Org. Chem. 1999, 64, 4783. https://doi.org/10.1021/jo990115p
  31. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963. https://doi.org/10.1021/ja00463a032
  32. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Lee, I. Int. J. Chem. Kinetic 1998, 30, 849. https://doi.org/10.1002/(SICI)1097-4601(1998)30:11<849::AID-KIN7>3.0.CO;2-V
  33. Oh, H. K; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874. https://doi.org/10.1021/jo025637a
  34. Guggenheim, E. A. Philos, Mag. 1926, 2, 538. https://doi.org/10.1080/14786442608564083
  35. Park, S. Y.; Oh, H. K. Bull. Korean Chem. Soc. 2009, 30, 749. https://doi.org/10.5012/bkcs.2009.30.3.749
  36. Oh, H. K.; Hong, S. K. Bull. Korean Chem. Soc. 2009, 30, 2453. https://doi.org/10.5012/bkcs.2009.30.10.2453
  37. Albert, A.; Serjeant, E. P. The Determination of Ionization Constants, 3rd ed.; Chapman and Hall: New York, 1984; pp 154-155.
  38. Dean, J. A. Handbook of Organic Chemistry; McGraw-Hill: New York, 1987; Ch. 8.
  39. Fischer, A.; Galloway, J. A.; Vaughan, J. J. Chem. Soc. 1964, 3591. https://doi.org/10.1039/jr9640003591
  40. Koh, H. J.; Han, K. L.; Lee, I. J. Org. Chem. 1999, 64, 4783. https://doi.org/10.1021/jo990115p
  41. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905
  42. Wiberg, K. B. Physical Organic Chemistry; Wiley: New York, 1964; p 378.

Cited by

  1. Hydrolysis of 1-(X-substituted-benzoyl)-4-aminopyridinium ions: effect of substituent X on reactivity and reaction mechanism vol.9, pp.23, 2011, https://doi.org/10.1039/c1ob06137b