DOI QR코드

DOI QR Code

Analysis of Heterocyclic Amines in Human Urine Using Multiple Solid-Phase Extraction by Liquid Chromatography/Mass Spectrometry

  • Received : 2010.05.04
  • Accepted : 2010.06.29
  • Published : 2010.08.20

Abstract

A multiple solid-phase extraction (SPE) method was used with liquid chromatography, coupled with mass spectrometry (LC/MS), for the analysis of heterocyclic amines (HCAs) in human urine. Separation efficiencies based on the pH of the mobile phase and the types of columns were compared. An amide column showed better baseline separation and narrower HCA peak widths at pH 5.0 for the mobile phase than a $C_8$ column. Each SPE step, HLB, MCX, and HybridSPE, was optimized by controlling the pH conditions. The combined method with the three SPEs effectively removed interfering species that cause ion-suppression during HCA detection. Validation of the method, performed with SIM and SRM detection, showed correlation coefficients above 0.991 in the range 0.3 - 16.7 ng/mL. Recovery rates were 45.4 - 97.3% on the $C_8$ column and 71.8 - 101.4% on the amide column, and method detection limits were 0.11 - 0.65 ng/mL on the $C_8$ column and 0.12 - 0.48 ng/mL on the amide column. This method using multiple SPEs offers significant benefits for high-throughput determination of HCAs in urine.

Keywords

References

  1. Sugimura, T. Carcinogenesis 2000, 21, 387. https://doi.org/10.1093/carcin/21.3.387
  2. Sugimura, T. Mutat. Res. 1997, 376, 211. https://doi.org/10.1016/S0027-5107(97)00045-6
  3. Skog, K. I.; Johansson, M. A. E.; Jagerstad, M. I. Food Chem. Toxicol.1998, 36, 879. https://doi.org/10.1016/S0278-6915(98)00061-1
  4. Alaejos, M. S.; Gonzalez, V.; Afonso, A. M. Food Additives & Contaminants2008, 25, 2. https://doi.org/10.1080/02652030701474235
  5. Adamson, R. H.; Takayama, S.; Sugimura, T.; Thorgeirsson, U. P. Environmental Health Perspectives 1994, 102, 190. https://doi.org/10.2307/3431610
  6. Ohgaki, H.; Takayama, S.; Sugimura, T. Mutat. Res. 1991, 259, 399. https://doi.org/10.1016/0165-1218(91)90130-E
  7. Wakabayashi, K.; Nagao, M.; Esumi, H.; Sugimura, T. Cancer Res. 1992, 52, 2092s.
  8. Sanz Alaejos, M.; Ayala, J. H.; Gonzalez, V.; Afonso, A. M. J. Chromatogr. B 2008, 862, 15. https://doi.org/10.1016/j.jchromb.2007.11.040
  9. Felton, J. S., Knize, M. G., Cooper, C. S., Grover, P. L., Eds.; Handbookof Experimental Pharmacology; Springer-Verlag: Berlin 1990; p 471.
  10. IARC, Monographs on the evaluation of carcinogenic risk to humans, Some Naturally Occurring Substances: Food items and constituents, Heterocyclic Aromatic Amines and Mycotoxins; Lyon 1993; Vol. 56.
  11. Gross, G. A.; Gruter, A. J. Chromatogr. A 1992, 592, 271. https://doi.org/10.1016/0021-9673(92)85095-B
  12. Toribio, F.; Busquets, R.; Puignou, L.; Galceran, M. T. Food Chem. Toxicol. 2007, 45, 667. https://doi.org/10.1016/j.fct.2006.10.016
  13. Iwasaki, M.; Kataoka, H.; Ishihara, J.; Takachi, R.; Hamada, G.S.; Sharma, S.; Marchand, L. L.; Tsugane, S. Journal of Food Composition and Analysis 2010, 23, 61. https://doi.org/10.1016/j.jfca.2009.07.004
  14. Persson, E.; Oroszvari, B. K.; Tornberg, E.; Sjoholm, I.; Skog, K. International Journal of Food Science & Technology 2007, 43, 62. https://doi.org/10.1111/j.1365-2621.2006.01390.x
  15. Malfatti, M. A.; Kulp, K. S.; Knize, M. G.; Davis, C.; Massengill, J. P.; Williams, S.; Nowell, S.; MacLeod, S.; Dingley, K. H.; Turteltaub, K. W.; Lang, N. P.; Felton, J. S. Carcinogenesis 1999, 20, 705. https://doi.org/10.1093/carcin/20.4.705
  16. Turesky, R. J.; Garner, R. C. Chem. Res. Toxicol. 1998, 11, 217. https://doi.org/10.1021/tx9701891
  17. Bang, J.; Frandsen, H.; Skog, K. Chromatographia 2004, 60, 651. https://doi.org/10.1365/s10337-004-0431-5
  18. Zhou, H.; Josephy, P. D.; Kim, D.; Guengerich, F. P. Biochemistry 2004, 43, 981. https://doi.org/10.1021/bi035593f
  19. Rich, K. J.; Murray, B. P.; Lewis, I.; Rendell, N. B.; Davies, D. S.; Gooderham, N. J.; Boobis, A. R. Carcinogenesis 1992, 13, 2221. https://doi.org/10.1093/carcin/13.12.2221
  20. Frandsen, H.; Nielsen, P. A.; Grivas, S.; Larsen, J. C. Mutagenesis 1994, 9, 59. https://doi.org/10.1093/mutage/9.1.59
  21. Buonarati, M. H.; Turteltaub, K. W.; Shen, N. H.; Felton, J. S. Mutat. Res.1990, 245, 185. https://doi.org/10.1016/0165-7992(90)90048-O
  22. Lin, D.; Meyer, D. J.; Ketterer, B.; Lang, N. P.; Kadlubar, F. F. Cancer Res.1994, 54, 4920.
  23. Reistad, R.; Rossland, O. J.; Latva-Kala, K. J.; Rasmussen, T.; Vikse, R.; Becher, G.; Alexander, J. Food Chem. Toxicol. 1997, 35, 945 https://doi.org/10.1016/S0278-6915(97)00112-9
  24. Sentellas, S.; Moyano, E.; Puignou, L.; Galceran, M. T. J. Chromatogr. A 2004, 1032, 193. https://doi.org/10.1016/j.chroma.2003.11.011
  25. Ushiyama, H.; Wakabayashi, K.; Hirose, M.; Itoh, H.; Sugimura, T.; Nagao, M. Carcinogenesis 1991, 12, 1417. https://doi.org/10.1093/carcin/12.8.1417
  26. Murray, S.; Lynch, A. M.; Knize, M. G.; Gooderham, N. J. J. Chromatogr.1993, 616, 211. https://doi.org/10.1016/0378-4347(93)80388-K
  27. Tikkanen, L. M.; Latva-Kala, K. J.; Heiniö, R. L. Food Chem. Toxicol. 1996, 34, 725. https://doi.org/10.1016/0278-6915(96)00036-1
  28. Thiebaud, H. P.; Knize, M. G.; Kuzmicky, P. A.; Felton, J. S.; Hsieh, D. P. J. Agric. Food Chem. 1994, 42, 1502. https://doi.org/10.1021/jf00043a021
  29. Kondjoyan, A.; Chevolleau, S.; Greve, E.; Gatellier, P.; Sante-Lhoutellier,V.; Bruel, S.; Touzet, C.; Portanguen, S.; Debrauwer, L. Food Chem. 2010, 119, 19. https://doi.org/10.1016/j.foodchem.2009.02.081
  30. Persson, E.; Oroszvari, B. K.; Tornberg, E.; Sjoholm, I.; Skog, K. International Journal of Food Science and Technology 2007, 43, 62.
  31. Turesky, R. J.; Goodenough, A. K.; Ni, W.; McNaughton, L.; Le-Master, D. M.; Holland, R. D.; Wu, R. W.; Felton, J. S. Chem. Res. Toxicol. 2007, 20, 520. https://doi.org/10.1021/tx600317r
  32. Oz, F.; Kaban, G.; Kaya, M. Food Chem. 2007, 104, 67. https://doi.org/10.1016/j.foodchem.2006.10.075
  33. Wu, J.; Wong, M. K.; Lee, H. K.; Ong, C. N. J. Chromatogr. Sci. 1995, 33, 712. https://doi.org/10.1093/chromsci/33.12.712
  34. Kataoka, H.; Pawliszyn, J. Chromatographia 1999, 50, 532. https://doi.org/10.1007/BF02493657
  35. Murkovic, M.; Friedrich, M.; Pfannhauser, W. Z. Lebensm.Unters. Forsch. A 1997, 205, 347. https://doi.org/10.1007/s002170050178
  36. Janoszka, B.; Blaszczyk, U.; Warzecha, L.; Strozyk, M.; Damasiewicz-Bodzek, A.; Bodzek, D. J. Chromatogr. A 2001, 938, 155. https://doi.org/10.1016/S0021-9673(01)01364-4
  37. Bang, J.; Nukaya, H.; Skog, K. J. Chromatogr. A 2002, 977, 97. https://doi.org/10.1016/S0021-9673(02)01351-1
  38. Skog, K. J. Chromatogr. B 2004, 802, 39. https://doi.org/10.1016/j.jchromb.2003.11.016
  39. Yasuyoshi S, K. N.; Hitoshi, U.; Rika, G. Mutat. Res. 1993, 300, 207. https://doi.org/10.1016/0165-1218(93)90052-F
  40. Masahiko, T.; Kenji, Y.; Taketoshi, N. J. Chromatogr. A 2001, 928, 53. https://doi.org/10.1016/S0021-9673(01)01127-X
  41. Viberg, P.; Wahlund, K. G.; Skog, K. J. Chromatogr. A 2006, 1133, 347. https://doi.org/10.1016/j.chroma.2006.08.034
  42. Wakabayashi, K.; Ushiyama, H.; Takahashi, M.; Nukaya, H.; Kim, S. B.; Hirose, M.; Ochiai, M.; Sugimura, T.; Nagao, M. Environ. Health Persp. 1993, 99, 129. https://doi.org/10.2307/3431468
  43. Kataoka, H.; Kijima, K.; Maruo, G. Bull. Environ. Contam. Toxicol. 1998, 60, 60. https://doi.org/10.1007/s001289900591
  44. Skog, K.; Solyakov, A.; Arvidsson, P.; Jagerstad, M. J. Chromatogr. A 1998, 803, 227. https://doi.org/10.1016/S0021-9673(97)01266-1
  45. Murray, S.; Gooderham, N. J.; Boobis, A. R.; Davies, D. S. Carcinogenesis1988, 9, 321. https://doi.org/10.1093/carcin/9.2.321
  46. Galceran, M. T.; Moyano, E.; Puignou, L.; Pais, P. J. Chromatogr. A 1996, 730, 185. https://doi.org/10.1016/0021-9673(95)01084-X
  47. Toribio, F.; Moyano, E.; Puignou, L.; Galceran, M. T. J. Chromatogr. A 2000, 869, 307. https://doi.org/10.1016/S0021-9673(99)01091-2
  48. Ardvidsson, P.; van Boekel, M. A. J. S.; Skog, K.; Jagerstad, M. J. Food Sci. 1997, 62, 911. https://doi.org/10.1111/j.1365-2621.1997.tb15005.x
  49. Pais, P.; Salmon, C. P.; Knize, M. G.; Felton, J. S. J. Argric. Food Chem. 1999, 47, 1098 https://doi.org/10.1021/jf980644e
  50. Shah, F. U.; Barri, T.; Jonsson, J. Å.; Skog, K J. Chromatogr. B 2008,870, 203. https://doi.org/10.1016/j.jchromb.2008.06.006
  51. Johansson, M. A. E.; Jagerstad, M. Carcinogenesis 1994, 15, 1511. https://doi.org/10.1093/carcin/15.8.1511
  52. Skog, K.; Steineck, G.; Augustsson, K.; Jagerstad, M. Carcinogenesis 1995, 16, 861. https://doi.org/10.1093/carcin/16.4.861
  53. Knize, M. G.; Dolbeare, F. A.; Carroll, K. L.; Moore, D. H.; Felton, J. S. Food Chem. Toxicol. 1994, 32, 595. https://doi.org/10.1016/0278-6915(94)90002-7
  54. Karamanos, N. K.; Tsegenidis, T. J. Liq. Chromatogr. Rel. Technol. 1996, 19, 2247. https://doi.org/10.1080/10826079608017154
  55. Ni, W.; Mcnaughton, L.; Lemaster, D. M.; Sinha, R.; Turesky, R. J. J. Agric. Food Chem. 2008, 56, 68. https://doi.org/10.1021/jf072461a
  56. Turesky, R. J.; Taylor, J.; Schnackenberg, L.; Freeman, J. P.; Holland, R. D. J. Agric. Food Chem. 2005, 53, 3248. https://doi.org/10.1021/jf048290g
  57. Barcelo-Barrachina, E.; Moyano , E.; Puignou, L.; Galceran, M. T. J. Chromatogr. B 2004, 802, 45. https://doi.org/10.1016/j.jchromb.2003.09.023
  58. Prabhu, S.; Lee, M. J.; Hu, W. Y.; Winnik, B.; Yang, I.; Buckley, B.; Hong, J. Y. Anal. Biochem. 2001, 298, 306. https://doi.org/10.1006/abio.2001.5392
  59. Holland, R. D.; Taylor, J.; Schoenbachler, L.; Jones, R. C.; Freeman, J. P.; Miller, D. W.; Lake, B. G.; Gooderham, N. J.; Turesky, R. J. Chem. Res. Toxicol. 2004, 17, 1121. https://doi.org/10.1021/tx049910a
  60. Toribio, F.; Busquets, R.; Puignou, L.; Galceran, M. T. Food Chem. Toxicol. 2007, 45, 667. https://doi.org/10.1016/j.fct.2006.10.016
  61. Paisa, P.; Knize, M. G. J. Chromatogr. B 2000, 747, 139. https://doi.org/10.1016/S0378-4347(00)00118-3
  62. Guy, P. A.; Gremaud, E.; Richoz, J.; Turesky, R. J. J. Chromatogr. A 2000, 883, 89. https://doi.org/10.1016/S0021-9673(00)00361-7
  63. Gross, G. A.; Turesky, R. J.; Fay, L. B.; Stillwell, W. G.; Skipper, P. L.; Tannenbaum, S. R. Carcinogenesis 1993, 14, 2313. https://doi.org/10.1093/carcin/14.11.2313
  64. Toribio, F.; Moyano, E.; Puignou, L.; Galceran, M. T. J. Mass Spectrom. 2002, 37, 812. https://doi.org/10.1002/jms.340
  65. Busquets, R.; Bordas, M.; Toribio, F.; Puignou, L.; Galceran, M. T. J. Chromatogr. B 2004, 802, 79. https://doi.org/10.1016/j.jchromb.2003.09.033
  66. Inbaraj, B. S.; Chiu, C. P.; Chiu, Y. T.; Ho, G. H.; Yang, J.; Chen, B. H. J. Agric. Food Chem. 2006, 54, 6452. https://doi.org/10.1021/jf061300o
  67. Zimmerli, B.; Rhyn, P.; Zoller, O.; Schlatter, J. Food Addit. Contam. 2001, 18, 533. https://doi.org/10.1080/02652030119545
  68. Ristic, A.; Cichna, M.; Sontag, G. J. Chromatogr. B 2004, 802, 87. https://doi.org/10.1016/j.jchromb.2003.09.028

Cited by

  1. Selective enrichment of the degradation products of organophosphorus nerve agents by zirconia based solid-phase extraction vol.1218, pp.38, 2010, https://doi.org/10.1016/j.chroma.2011.07.091
  2. Hybrid stationary phases: the answer to all of your matrix effect problems? vol.5, pp.22, 2013, https://doi.org/10.4155/bio.13.253
  3. Quantitative analysis of heterocyclic amines in urine by liquid chromatography coupled with tandem mass spectrometry vol.447, pp.None, 2010, https://doi.org/10.1016/j.ab.2013.11.012