DOI QR코드

DOI QR Code

A Surfactant-based Method for Carbon Coating of LiNi0.8Co0.15Al0.05O2 Cathode in Li Ion Batteries

  • Chung, Young-Min (Department of Chemistry, University of Ulsan) ;
  • Ryu, Seong-Hyeon (Department of Chemistry, University of Ulsan) ;
  • Ju, Jeong-Hun (Department of Chemistry, University of Ulsan) ;
  • Bak, Yu-Rim (Department of Chemistry, University of Ulsan) ;
  • Hwang, Moon-Jin (Department of Chemistry, University of Ulsan) ;
  • Kim, Ki-Won (i-Cube Center, ITRC for Energy Storage and Conversion, Gyeong Sung National University) ;
  • Cho, Kwon-Koo (i-Cube Center, ITRC for Energy Storage and Conversion, Gyeong Sung National University) ;
  • Ryu, Kwang-Sun (Department of Chemistry, University of Ulsan)
  • Received : 2010.04.08
  • Accepted : 2010.06.22
  • Published : 2010.08.20

Abstract

A $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ (LNCAO/C) active material composite cathode was coated with carbon. The conductive carbon coating was obtained by addition of surfactant during synthesis. The addition of surfactant led to the formation of an amorphous carbon coating layer on the pristine LNCAO surface. The layer of carbon coating was clearly detected by FE-TEM analysis. In electrochemical performance, although the LNCAO/C showed similar capacity at low C-rate conditions, the rate capability was improved by the form of the carbon coating at high current discharge state. After 40 cycles of charge-discharge processes, the capacity retention of LNCAO/C was better than that of LNCAO. The carbon coating is effectively protected the surface structure of the pristine LNCAO during Li insertion-extraction.

Keywords

References

  1. Nagaura, T.; Taza, K. Prog. Batt. Sol. Cells 1990, 9, 20.
  2. Zou, M.; Yoshio, M.; Gopukumar, S.; Yamaki, J. Chem. Mater. 2002, 15, 1310.
  3. Chen, Z.; Dahn, J. R. Electrochem. Solid-State Lett. 2003, 6, 221. https://doi.org/10.1149/1.1611731
  4. Kannan, A. M.; Rabenberg, L.; Manthiram, A. Electrochem. Solid-State Lett. 2003, 6, 16.
  5. Liu, H.; Zhang, Z.; Gong, Z.; Yang, Y. Solid State Ionics 2004, 166 (3-4), 317. https://doi.org/10.1016/j.ssi.2003.11.010
  6. Wang, Z.; Wu, C.; Liu, L.; Wu, F.; Chen, L.; Huang, X. J. Electrochem. Soc. 2002, 149(4), 466. https://doi.org/10.1149/1.1456919
  7. Cho, J.; Kim, Y. J.; Kim, T. J.; Park, B. Angew. Chem. Int. Ed. 2001, 40(18), 3367. https://doi.org/10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A
  8. Cho, J.; Lee, J. G.; Kim, B.; Park, B. Chem. Mater. 2003, 15, 3190. https://doi.org/10.1021/cm0302173
  9. Cho, J. Chem. Mater. 2000, 12, 3089. https://doi.org/10.1021/cm000153l
  10. Lee, K. K.; Kim, K. B. J. Electrochem. Soc. 2000, 147(5), 1709. https://doi.org/10.1149/1.1393422
  11. Ryu, K. S.; Lee, S. H.; Koo, B. K.; Lee, J. W.; Kim, K. M.; Park, Y. J. J. Appl. Electrochem. 2008, 38, 1385-1390. https://doi.org/10.1007/s10800-008-9576-5
  12. Nuzzo, R. G.; Allara D. L. J. Am. Chem. Soc. 1983, 105, 4481. https://doi.org/10.1021/ja00351a063
  13. Klong, H. P.; Alexander, L. E. X-ray Diffraction Procedures for Crystalline and Amorphous Materials 1954.
  14. Pouget, J. P.; Jozefowicz, M. F.; Epstein, A. J.; Tang, X.; Mac-Diarmid, A. G. Macromolecules 1991, 24, 779. https://doi.org/10.1021/ma00003a022
  15. Moon, Y. B.; Cao, Y.; Smith, P.; Heeger, A. J. Polym Commun. 1991, 30, 196.
  16. Kavan, L.; Gratzel, M. Electrochem. Solid-State Lett. 2002, 5, A39. https://doi.org/10.1149/1.1432783
  17. Li, W.; Reimers, J. N.; Dahn, J. R. Solid State Ionics 1993, 67, 123. https://doi.org/10.1016/0167-2738(93)90317-V
  18. Sun, Y. K.; Cho, S. W.; Lee, S. W.; Yoon, C. S.; Amine, K. J. Electrochem. Soc. 2007, 154, A168. https://doi.org/10.1149/1.2422890

Cited by

  1. Results of a 20 000 h lifetime test of a 7 kW direct methanol fuel cell (DMFC) hybrid system – degradation of the DMFC stack and the energy storage vol.7, pp.9, 2014, https://doi.org/10.1039/C4EE00749B
  2. NCA cathode material: synthesis methods and performance enhancement efforts vol.5, pp.12, 2018, https://doi.org/10.1088/2053-1591/aae167
  3. Improved cycle performance of nitrogen and phosphorus co-doped carbon coatings on lithium nickel cobalt aluminum oxide battery material vol.53, pp.13, 2018, https://doi.org/10.1007/s10853-018-2275-7
  4. Review of Modified Nickel-Cobalt Lithium Aluminate Cathode Materials for Lithium-Ion Batteries vol.2019, pp.None, 2010, https://doi.org/10.1155/2019/2730849
  5. LiNi0.8Co0.15Al0.05O2 양극활물질의 전기화학적 특성 향상을 위한 MgF2 표면처리 효과 vol.58, pp.1, 2010, https://doi.org/10.9713/kcer.2020.58.1.52
  6. A robust carbon coating strategy toward Ni-rich lithium cathodes vol.46, pp.13, 2010, https://doi.org/10.1016/j.ceramint.2020.05.160
  7. Nafion‐coated LINI 0.80 CO 0.15 AL 0.05 O 2 ( NCA ) cathode preparation and its infl vol.2, pp.5, 2020, https://doi.org/10.1002/est2.154
  8. Enabling LiNi0.88Co0.09Al0.03O2 Cathode Materials with Stable Interface by Modifying Electrolyte with Trimethyl Borate vol.9, pp.4, 2021, https://doi.org/10.1021/acssuschemeng.0c09241
  9. Zn와 Al을 첨가한 LiNi0.85Co0.15O2 양극활물질의 제조 및 전기화학적 특성평가 vol.59, pp.1, 2010, https://doi.org/10.9713/kcer.2021.59.1.42
  10. A review of nickel-rich layered oxide cathodes: synthetic strategies, structural characteristics, failure mechanism, improvement approaches and prospects vol.305, pp.None, 2010, https://doi.org/10.1016/j.apenergy.2021.117849