References
- Nagaura, T.; Taza, K. Prog. Batt. Sol. Cells 1990, 9, 20.
- Zou, M.; Yoshio, M.; Gopukumar, S.; Yamaki, J. Chem. Mater. 2002, 15, 1310.
- Chen, Z.; Dahn, J. R. Electrochem. Solid-State Lett. 2003, 6, 221. https://doi.org/10.1149/1.1611731
- Kannan, A. M.; Rabenberg, L.; Manthiram, A. Electrochem. Solid-State Lett. 2003, 6, 16.
- Liu, H.; Zhang, Z.; Gong, Z.; Yang, Y. Solid State Ionics 2004, 166 (3-4), 317. https://doi.org/10.1016/j.ssi.2003.11.010
- Wang, Z.; Wu, C.; Liu, L.; Wu, F.; Chen, L.; Huang, X. J. Electrochem. Soc. 2002, 149(4), 466. https://doi.org/10.1149/1.1456919
- Cho, J.; Kim, Y. J.; Kim, T. J.; Park, B. Angew. Chem. Int. Ed. 2001, 40(18), 3367. https://doi.org/10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A
- Cho, J.; Lee, J. G.; Kim, B.; Park, B. Chem. Mater. 2003, 15, 3190. https://doi.org/10.1021/cm0302173
- Cho, J. Chem. Mater. 2000, 12, 3089. https://doi.org/10.1021/cm000153l
- Lee, K. K.; Kim, K. B. J. Electrochem. Soc. 2000, 147(5), 1709. https://doi.org/10.1149/1.1393422
- Ryu, K. S.; Lee, S. H.; Koo, B. K.; Lee, J. W.; Kim, K. M.; Park, Y. J. J. Appl. Electrochem. 2008, 38, 1385-1390. https://doi.org/10.1007/s10800-008-9576-5
- Nuzzo, R. G.; Allara D. L. J. Am. Chem. Soc. 1983, 105, 4481. https://doi.org/10.1021/ja00351a063
- Klong, H. P.; Alexander, L. E. X-ray Diffraction Procedures for Crystalline and Amorphous Materials 1954.
- Pouget, J. P.; Jozefowicz, M. F.; Epstein, A. J.; Tang, X.; Mac-Diarmid, A. G. Macromolecules 1991, 24, 779. https://doi.org/10.1021/ma00003a022
- Moon, Y. B.; Cao, Y.; Smith, P.; Heeger, A. J. Polym Commun. 1991, 30, 196.
- Kavan, L.; Gratzel, M. Electrochem. Solid-State Lett. 2002, 5, A39. https://doi.org/10.1149/1.1432783
- Li, W.; Reimers, J. N.; Dahn, J. R. Solid State Ionics 1993, 67, 123. https://doi.org/10.1016/0167-2738(93)90317-V
- Sun, Y. K.; Cho, S. W.; Lee, S. W.; Yoon, C. S.; Amine, K. J. Electrochem. Soc. 2007, 154, A168. https://doi.org/10.1149/1.2422890
Cited by
- Results of a 20 000 h lifetime test of a 7 kW direct methanol fuel cell (DMFC) hybrid system – degradation of the DMFC stack and the energy storage vol.7, pp.9, 2014, https://doi.org/10.1039/C4EE00749B
- NCA cathode material: synthesis methods and performance enhancement efforts vol.5, pp.12, 2018, https://doi.org/10.1088/2053-1591/aae167
- Improved cycle performance of nitrogen and phosphorus co-doped carbon coatings on lithium nickel cobalt aluminum oxide battery material vol.53, pp.13, 2018, https://doi.org/10.1007/s10853-018-2275-7
- Review of Modified Nickel-Cobalt Lithium Aluminate Cathode Materials for Lithium-Ion Batteries vol.2019, pp.None, 2010, https://doi.org/10.1155/2019/2730849
- LiNi0.8Co0.15Al0.05O2 양극활물질의 전기화학적 특성 향상을 위한 MgF2 표면처리 효과 vol.58, pp.1, 2010, https://doi.org/10.9713/kcer.2020.58.1.52
- A robust carbon coating strategy toward Ni-rich lithium cathodes vol.46, pp.13, 2010, https://doi.org/10.1016/j.ceramint.2020.05.160
- Nafion‐coated LINI 0.80 CO 0.15 AL 0.05 O 2 ( NCA ) cathode preparation and its infl vol.2, pp.5, 2020, https://doi.org/10.1002/est2.154
- Enabling LiNi0.88Co0.09Al0.03O2 Cathode Materials with Stable Interface by Modifying Electrolyte with Trimethyl Borate vol.9, pp.4, 2021, https://doi.org/10.1021/acssuschemeng.0c09241
- Zn와 Al을 첨가한 LiNi0.85Co0.15O2 양극활물질의 제조 및 전기화학적 특성평가 vol.59, pp.1, 2010, https://doi.org/10.9713/kcer.2021.59.1.42
- A review of nickel-rich layered oxide cathodes: synthetic strategies, structural characteristics, failure mechanism, improvement approaches and prospects vol.305, pp.None, 2010, https://doi.org/10.1016/j.apenergy.2021.117849