References
- Cao, G. Nanostructures & nanomaterials: Synthesis, Properties & Application; Imperial college press: London, 2004; pp 110-173.
- Ozin, G. A.; Arsenault, A. C. Nanochemistry: A Chemical Approach to Nanomaterials; RSC publishing: Cambridge, 2005; pp 167-265.
- Ajayan, P. M.; Stephan, O.; Redlich, Ph.; Colliex, C. Nature 1995,375, 564. https://doi.org/10.1038/375564a0
- Ha, W.; Fan, S.; Li, Q.; Hu, Y. Science 1997, 277, 1287. https://doi.org/10.1126/science.277.5330.1287
- Xia, Y.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M. Chem. Rev.1999, 99, 1823. https://doi.org/10.1021/cr980002q
- Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Brian, M.; Byron, G.; Yin, Y.; Kim, Y.; Yan, H. Adv. Mater. 2003, 15, 353. https://doi.org/10.1002/adma.200390087
- Wen, X.; Zhang, W.; Yang, S. Nano Lett. 2002, 2, 1397. https://doi.org/10.1021/nl025848v
- Zhang, W.;Wen, X.; Yang, S.; Berta, Y.; Wang, Z. L. Adv. Mater.2003, 15, 822. https://doi.org/10.1002/adma.200304840
- Zhang, W.; Wen, X.; Yang, S. Inorg. Chem. 2003, 42, 5005. https://doi.org/10.1021/ic0344214
- Wen, X.; Zhang, W.; Yang, S. Langmuir 2003, 19, 5898. https://doi.org/10.1021/la0342870
- Wen, X.; Xie, Y.; Choi, C. L.; Wan, K. C.; Li. X.-Y.; Yang, S. Langmuir 2005, 21, 4729. https://doi.org/10.1021/la050038v
- Shoesmith, D. W.; Rummery, T. E.; Owen, D.; Lee, W. J. Electrochem. Soc. 1976, 123, 790. https://doi.org/10.1149/1.2132934
- Wu, X.; Bai, H.; Zhang, J.; Chen, F.; Shi, G. J. Phys. Chem. B2005, 109, 22836. https://doi.org/10.1021/jp054350p
- Pan, Q.; Jin, H.; Wang, H. Nanotechnology 2007, 18, 355605. https://doi.org/10.1088/0957-4484/18/35/355605
- Wu, X.; Shi, G. J. Phys. Chem. B 2006, 110, 11247. https://doi.org/10.1021/jp056969x
- Chen, X.; Kong, L.; Dong, D.; Yang, G.; Yu, L.; Chen, J.; Zhang,P. Appl. Surf. Sci. 2009, 255, 4015. https://doi.org/10.1016/j.apsusc.2008.10.104
- Pan, Q.; Wang, M.; Wang, H. Appl. Surf. Sci. 2008, 254, 6002. https://doi.org/10.1016/j.apsusc.2008.03.034
- Wang, S.; Song, Y.; Jiang, L. Nanotechnology 2007, 18, 015103. https://doi.org/10.1088/0957-4484/18/1/015103
- Hou, H.; Xie, Y.; Li, Q. Cryst. Growth Des. 2005, 5, 201. https://doi.org/10.1021/cg049972z
- Xu, H.; Wang, W.; Zhu, W.; Zhou, L.; Ruan, M. Cryst. Growth Des. 2007, 7, 2720. https://doi.org/10.1021/cg060727k
- Reitz, J. B.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 11467. https://doi.org/10.1021/ja981579s
- Wang, H.; Pan, Q.; Zhao, J.; Yin, G.; Zuo, P. J. Power Sources 2007, 167, 206. https://doi.org/10.1016/j.jpowsour.2007.02.008
- Hoque, E.; DeRose, J. A.; Houriet, R.; Hoffmann, P.; Mathieu, H. J. Chem. Mater. 2007, 19, 798. https://doi.org/10.1021/cm062318h
- http://www.lasurface.com.
- Vere, A. W. In Crystal Growth: Principles and Progress; Dobson, P. J., Ed.; Plenum Press: New York, 1987; p 17.
- Singh, D. P.; Neti, N. R.; Sinha, A. S. K.; Srivastava, O. N. J. Phys. Chem. C 2007, 111, 1638. https://doi.org/10.1021/jp0657179
- Becerra, J. G.; Salvarezza, R. C.; Arvia, A. J. Electrochimica Acta1988, 33, 613. https://doi.org/10.1016/0013-4686(88)80059-8
- Shoesmith, D. W.; Rummery, T. E.; Owen, D.; Lee, W. J. Electrochem. Soc. 1976, 123, 790. https://doi.org/10.1149/1.2132934
- Bouillon, F.; Piron, J.; Stevens, J. Bull. Soc. Chim. Belges 1958,67, 643. https://doi.org/10.1002/bscb.19580671102
Cited by
- Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion vol.3, pp.8, 2015, https://doi.org/10.1039/C4TA05730A
- Electrochemical behaviors of hierarchical copper nano-dendrites in alkaline media vol.11, pp.8, 2018, https://doi.org/10.1007/s12274-018-2010-3
- Synthesis of copper oxides films via anodic oxidation of copper foil followed by thermal reduction vol.347, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/347/1/012010
- Yucca fern shaped CuO nanowires on Cu foam for remitting capacity fading of Li-ion battery anodes vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-24963-2
- A stable superhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanoneedle arrays vol.257, pp.13, 2011, https://doi.org/10.1016/j.apsusc.2011.01.078
- Molecular-Scale Investigation of Reconstructed Copper Surface Induced by Dissociative Adsorption of O2 vol.32, pp.4, 2010, https://doi.org/10.5012/bkcs.2011.32.4.1129
- Electrochemical fabrication of Cu(OH)2 and CuO nanostructures and their catalytic property vol.327, pp.1, 2010, https://doi.org/10.1016/j.jcrysgro.2011.05.025
- Formation of Flower-like Structures on Copper Foil Surface in Mixed Electrolytes of Water and Amides vol.65, pp.10, 2010, https://doi.org/10.4139/sfj.65.489
- Preparation of Nanosheet Copper Oxide Films by Anodic Oxidation of a Brass and Their Photoelectrochemical Performance vol.6, pp.3, 2010, https://doi.org/10.12677/ms.2016.63023
- Acetone sensing properties of CuO nanowalls synthesized via oxidation of Cu foil in aqueous NH4OH vol.150, pp.None, 2010, https://doi.org/10.1016/j.vacuum.2018.01.030
- Toward Robust Photoelectrochemical Operation of Cuprous Oxide Nanowire Photocathodes Using a Strategically Designed Solution-Processed Titanium Oxide Passivation Coating vol.11, pp.16, 2010, https://doi.org/10.1021/acsami.9b02727
- Continuous Directional Water Transport on Integrating Tapered Surfaces vol.7, pp.9, 2020, https://doi.org/10.1002/admi.202000081
- Ultrafast Growth of a Cu(OH)2-CuO Nanoneedle Array on Cu Foil for Methanol Oxidation Electrocatalysis vol.12, pp.24, 2010, https://doi.org/10.1021/acsami.0c08979
- A low cost flexible photocatalyst based on silver decorated Cu2O nanowires vol.2, pp.9, 2010, https://doi.org/10.1007/s42452-020-03354-1
- The Optical and Electrical Performance of CuO Synthesized by Anodic Oxidation Based on Copper Foam vol.13, pp.23, 2010, https://doi.org/10.3390/ma13235411
- Pushing the Limits of Rapid Anodic Growth of CuO/Cu(OH)2 Nanoneedles on Cu for the Methanol Oxidation Reaction: Anodization pH Is the Game Changer vol.4, pp.1, 2021, https://doi.org/10.1021/acsaem.0c02822