DOI QR코드

DOI QR Code

Basis Set Superposition Error on Structures and Complexation Energies of Organo-Alkali Metal Iodides

  • Received : 2010.05.19
  • Accepted : 2010.06.15
  • Published : 2010.08.20

Abstract

Theoretical studies have been performed to study the binding characteristics of the alkali metal iodides, M-I (M = Li, Na, K), to poly(ethylene oxide) (PEO, I), poly(ethylene amine) (PEA, II) and poly(ethylene N-methylamine) (PEMA, III) via the B3LYP method. In this study, two types of complexes, singly-coordinated systems (SCS) and doubly-coordinated systems (DCS), were considered, and dissociation energies (${\Delta}E_D$) were calculated both with and without basis set superposition error (BSSE). Two types of counterpoise (CP) approach were investigated in this work, but the ${\Delta}E_D$ values corrected by using the function CP (fCP) correction exhibited an unusual trend in some cases due to deformation of the sub-units. This problem was solved by including geometry relaxation in the CP-corrected (GCP) interaction energy. On the other hand, the effects of the BSSE on the structures were very small when the complexes were re-optimized on the CP-corrected (RCP) potential energy surface (PES), even if the bond lengths between X and $M^+$ ($d_{{X-M}^+}$) and between $M^+$ and $I^-$ ($d_{M^+-I^-}$) were slightly lengthened. Therefore, neither the GCP nor RCP corrections made much difference to the dissociation energies.

Keywords

References

  1. Gray, F. M. In Polymer Electrolytes; Connor, J. A., Ed.; The Royal Society of Chemistry: London, 1997.
  2. Ferry, A.; Oradd, G.; Jacobsson, P. J. Chem. Phys. 1998, 108, 7426. https://doi.org/10.1063/1.476163
  3. Watanabe, M.; Ogata, N. in Polymer Electrolyte Reviews; Mac-Callum, J. R., Vincent, C. A., Eds.; Elsevier: London, 1987.
  4. Won, J.; Lee, K. M.; Kang, Y. S.; Chang, S.-K.; Kim, C. K.; Kim,C.-K. Macromol. Res. 2006, 14, 404. https://doi.org/10.1007/BF03219102
  5. Chalasiński, G.; Szczesniak, M. M. Chem. Rev. 1994, 94, 1723. https://doi.org/10.1021/cr00031a001
  6. Xantheas, S. S. J. Chem. Phys. 1996, 104, 8821. https://doi.org/10.1063/1.471605
  7. Jensen, H. B.; Ross, P. Chem. Phys. Lett. 1969, 3, 140. https://doi.org/10.1016/0009-2614(69)80118-1
  8. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
  9. Liu, B.; McLean, A. D. J. Chem. Phys. 1973, 59, 4557. https://doi.org/10.1063/1.1680654
  10. Boys, S. F.; Bernadi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
  11. Mayer, I. Int. J. Quantum Chem. 1983, 23, 341. https://doi.org/10.1002/qua.560230203
  12. Mayer, I. Int. J. Quantum Chem. 2004, 100, 59. https://doi.org/10.1002/qua.20231
  13. Salvador, P.; Paizs, B.; Duran, M.; Suhai, S. J. Comput. Chem. 2001, 22, 765. https://doi.org/10.1002/jcc.1042
  14. Daza, M. C.; Dobado, J. A.; Molina, J. M.; Salvador, P.; Duran, M.; Villaveces, J. L. J. Chem. Phys. 1999, 110, 11806. https://doi.org/10.1063/1.479166
  15. Siu, F. M.; Ma, N. L.; Tsang, C. W. J. Chem. Phys. 2001, 114, 7045. https://doi.org/10.1063/1.1360196
  16. Kim, C. K.; Zhang, H.; Yoon, S. H.; Won, J.; Lee, M.-J.; Kim, C. K. J. Chem. Phys. A 2009, 113, 513. https://doi.org/10.1021/jp802918b
  17. Zhang, Z.; Ito, S.; Moser, J.-E.; Zakeeruddin, S. M.; Gratzel, M. ChemPhysChem 2009, 10, 1834. https://doi.org/10.1002/cphc.200900199
  18. Yanagida, S.; Yu, Y.; Manseki, K. Acc. Chem. Res. 2009, 42, 1827. https://doi.org/10.1021/ar900069p
  19. Nasr, C.; Hotchandani, S.; Kamat, P. J. Chem. Phys. B 1998, 102, 4944. https://doi.org/10.1021/jp9811427
  20. Mwaura, J. K.; Zhao, X.; Jiang, H.; Schanze, K. S.; Reynolds, J. R. Chem. Mater. 2006, 18, 6109. https://doi.org/10.1021/cm062198d
  21. Gratzel, M. Nature 2001, 414, 338. https://doi.org/10.1038/35104607
  22. Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324. https://doi.org/10.1021/cr050149z
  23. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al- Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B03. Gaussian, Inc., Pittsburgh PA, 2003.
  24. Poirier, R.; Kari, R.; Csizmadia, I. G. Handbook of Gaussian Basis Sets; Elsevier: Amsterdam, 1985.
  25. Wiberg, K. B.; Sklenak, S. Organometallics 2001, 20, 771. https://doi.org/10.1021/om000820k
  26. Andzelm, J.; Klobukowski, M.; Radzio-Andzelm, E. J. Comput. Chem. 1984, 5, 146. https://doi.org/10.1002/jcc.540050205
  27. Kim, C. K.; Yoon, S. H.; Won, J.; Kim, C. K. Bull. Korean Chem. Soc. 2006, 27, 1219. https://doi.org/10.5012/bkcs.2006.27.8.1219
  28. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200 https://doi.org/10.1016/0009-2614(89)87234-3
  29. Kim, C. K.; Won, J.; Kim C. K. Unpublished results.
  30. Hugas, D.; Simon, S.; Duran, M. Chem. Phys. Lett. 2004, 386, 373. https://doi.org/10.1016/j.cplett.2004.01.083
  31. Salvador, P.; Duran, M.; Dannenberg, J. J. J. Phys. Chem. A 2002, 106, 6883. https://doi.org/10.1021/jp0258457
  32. Paizs, B.; Salvador, S.; Császár, A. G.; Duran, M.; Suhai, S. J. Comput. Chem. 2001, 22, 196. https://doi.org/10.1002/1096-987X(20010130)22:2<196::AID-JCC7>3.0.CO;2-Y
  33. Simon, S.; Duran, M.; Dannenberg, J. J. J. Chem. Phys. 1996, 105, 11204.

Cited by

  1. Density functional study on noncovalent functionalization of pyrazinamide chemotherapeutic with graphene and its prototypes vol.38, pp.3, 2014, https://doi.org/10.1039/c3nj00735a
  2. Effects of the basis set superposition error on optimized geometries of trimer complexes (Part I) vol.545, pp.None, 2010, https://doi.org/10.1016/j.cplett.2012.07.012