DOI QR코드

DOI QR Code

Formation and Related-Behavior of Micro-bowl Morphology Consisting of Ionic Palladium(II) Complexes

  • Kim, Cho-Rong (Department of Chemistry, Pusan National University) ;
  • Kim, Chi-Won (Department of Chemistry, Pusan National University) ;
  • Noh, Tae-Hwan (Department of Chemistry, Pusan National University) ;
  • Lee, Young-A (Department of Chemistry, Chonbuk National University) ;
  • Hong, Jong-Ki (College of Pharmacy, Kyung Hee University) ;
  • Jung, Ok-Sang (Department of Chemistry, Pusan National University)
  • Received : 2010.03.30
  • Accepted : 2010.06.12
  • Published : 2010.08.20

Abstract

Reaction of [(bpy)Pd]$(PF_6)_2$ (bpy = 2,2'-bipyridine) with racemic bis(isonicotinoyl)-1,1'-bi-2-naphtholate (L) in acetone, and followed by addition of chloroform and solvent evaporation allows to form amorphous micro-bowl morphology consisting of $[(bpy)PdL]_2(PF_6)_4$ without any template or additive. In contrast, the reaction and recrystallization in acetone for 1 week produce parallel-piped single crystals consisting of $[(bpy)_3Pd_3({\mu}_3-HPO_4)_2](PF_6)_2$. The formations of micro-bowl and parallel-piped single crystal morphologies appear to be primarily associated with the kinetic and thermodynamic control, respectively. The formation of micro-bowls may be attributed to eruption of organic solvents. Cosolvent effects and chemical properties on the formation of micro-bowl morphology have been observed.

Keywords

References

  1. Xia, Y.; Yang, P.; Sun, Y.; Wu, T.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353. https://doi.org/10.1002/adma.200390087
  2. Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2004, 126, 8124. https://doi.org/10.1021/ja048195o
  3. Colfen, H.; Mann, S. Angew. Chem., Int. Ed. 2003, 42, 2350. https://doi.org/10.1002/anie.200200562
  4. Vekilov, P.; Christova, C. G.; Dullens, R.P.A.; van Blaaderen, A. Science 2006, 296, 106.
  5. Sun, X.; Li, Y. Chem. Eur. J. 2003, 9, 2229. https://doi.org/10.1002/chem.200204394
  6. Li, M.; Schnablegger, H.; Mann, S. Nature 1999, 402, 393. https://doi.org/10.1038/46509
  7. Peng, Q.; Dong, Y.; Li, Y. Angew. Chem., Int. Ed. 2003, 42, 3027. https://doi.org/10.1002/anie.200250695
  8. Shi, T.; Qi, L. M.; Ma, J. M.; Cheng, H. M. J. Am. Chem. Soc. 2003,125, 3450. https://doi.org/10.1021/ja029958f
  9. Busch, S.; Dolhaine, H.; DuChesne, A.; Heinz, S.; Hochrein, O.;Laeri, F.; Podebrad, O.; Vietze, U.; Weiland, T.; Knief, R. Eur. J. Inorg. Chem. 1999, 643.
  10. Mann, S. Angew. Chem., Int. Ed. 2000, 39, 3392. https://doi.org/10.1002/1521-3773(20001002)39:19<3392::AID-ANIE3392>3.0.CO;2-M
  11. Yoon, H. J.; Chun, I. S.; Na, Y. M.; Lee, Y.-A.; Jung, O.-S. Chem. Commun. 2007, 492.
  12. Chun, I. S.; Kwon, J. A.; Yoon, H. J.; Bae, M. N.; Hong, J.; Jung, O.-S. Angew. Chem., Int. Ed. 2007, 46, 4960. https://doi.org/10.1002/anie.200701152
  13. Chun, I. S.; Lee, K. S.; Hong, J.; Do, Y.; Jung, O.-S. Chem. Lett. 2007, 36, 548. https://doi.org/10.1246/cl.2007.548
  14. Noh, T. H.; Chun, I. S.; Lee, Y.-A.; Ahn, S.; Hong, J.; Jung, O.-S. Bull. Korean Chem. Soc. 2008, 29, 1266. https://doi.org/10.5012/bkcs.2008.29.6.1266
  15. Yoon, H. J.; Chun, I. S.; Kim, J. P.; Lee, Y. S.; Jung, O.-S. Mater. Lett. 2008, 62, 883.
  16. Kim, S. A.; Kim, J. P.; Ahn, Y. M.; Hong, J.; Jung, O.-S. Bull. Korean Chem. Soc. 2008, 29, 729. https://doi.org/10.5012/bkcs.2008.29.4.729
  17. Bowden, N.; Terfort, A.; Carbeck, J.; Whitesides, G. M. Science 1997, 276, 233. https://doi.org/10.1126/science.276.5310.233
  18. Gracias, H.; Tien, J.; Breen, T. L.; Hsu, C.; Whitesides, G. M. Science2000, 289, 170.
  19. Whitesides, M.; Grzybowski, B. Science 2002, 295, 2418. https://doi.org/10.1126/science.1070821
  20. Thalladi, V. R.; Whitesides, G. M. J. Am. Chem. Soc. 2002, 124,3520. https://doi.org/10.1021/ja012697+
  21. Kovtyukhova, N. I.; Mallouk, T. E. Chem. Eur. J. 2002, 8, 4355.
  22. Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Nano Lett. 2003, 3, 1255. https://doi.org/10.1021/nl0345062
  23. Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch,A. R.; Weitz, D. A. Science 2002, 298, 1006. https://doi.org/10.1126/science.1074868
  24. Yano, K.; Fukushima, Y. Mater. Chem. 2003, 13, 2577. https://doi.org/10.1039/b304867p
  25. Kang, H. J.; Noh, T. H.; Jin, J. S.; Jung, O.-S. Inorg. Chem. 2008,47, 5528. https://doi.org/10.1021/ic800436n
  26. Im, S. H.; Jeong, U.; Xia, Y. Nature Mater. 2005, 4, 671. https://doi.org/10.1038/nmat1448
  27. Kharasch, M. S.; Seyler, R. C.; Mayo, F. R. J. Am. Chem. Soc. 1938,60, 882. https://doi.org/10.1021/ja01271a035
  28. Kim, T. W.; Lah, M. S.; Hong, J.-I. Chem. Commun. 2001, 743.
  29. Sheldrick, G. M. SHELXS-97: A Program for Structure Determination, University of Gottingen, Germany, 1997
  30. Sheldrick, G. M. SHELXL-97: A Program for Structure Refinement, University of Gottingen, Germany, 1997.
  31. Vaira, M. D.; Perruzzini, M.; Costantini, S. S.; Stoppioni, P. J. Organomet. Chem. 2006, 691, 3931. https://doi.org/10.1016/j.jorganchem.2006.05.049
  32. Xia, B.-H.; Che, C.-M.; Zhou, Z.-Y. Chem. Eur. J. 2003, 9, 3055. https://doi.org/10.1002/chem.200204698
  33. Kim, C. R.; Noh, T. H.; Yoo, K. H.; Yoo, B. R.; Jung, O.-S. Bull. Korean Chem. Soc. 2009, 30, 3057. https://doi.org/10.5012/bkcs.2009.30.12.3057

Cited by

  1. Solvent exchange and discrimination in crystalline state. Formation and properties of copper(II) complexes containing 2,3-bis(isonicotinoyloxy)naphthalene vol.1047, pp.None, 2010, https://doi.org/10.1016/j.molstruc.2013.04.042