DOI QR코드

DOI QR Code

Interactive CO2 Adsorption on the BaO (100) Surface: A Density Functional Theory (DFT) Study

  • Kwon, Soon-Chul (School of Civil and Environmental Engineering, Georgia Institute of Technology) ;
  • Hwang, Jung-Bae (Spectro) ;
  • Lee, Han-Lim (Department of Atmospheric Sciences, Yonsei University) ;
  • Lee, Wang-Ro (Faculty of Liberal Education, Chonbuk National University)
  • Received : 2010.05.28
  • Accepted : 2010.06.15
  • Published : 2010.08.20

Abstract

A density functional theory (DFT) study of $CO_2$ adsorption on barium oxide (BaO) adsorbents is conducted to understand the chemical activity of the oxygen site on the BaO (100) surface. This study evaluated the adsorption energies and geometries of a single $CO_2$ molecule and a pair of $CO_2$ molecules on the BaO (100) surface. A quantum calculation was performed to obtain information on the molecular structures and molecular reaction mechanisms; the results of the calculation indicated that $CO_2$ was adsorbed on BaO to form a stable surface carbonate with strong chemisorption. To study the interactive $CO_2$ adsorption on the BaO (100) surface, a pair of $CO_2$ molecules was bound to neighboring and distant oxygen sites. The interactive $CO_2$ adsorption on the BaO surface was found to slightly weaken the adsorption energy, owing to the interaction between $CO_2$ molecules.

Keywords

References

  1. Environmental Protection Agency 2008.
  2. International Energy Agency 2009.
  3. Meisen, A.; Shuai, X. S. Energy Conversion and Management 1997, 38, S37. https://doi.org/10.1016/S0196-8904(96)00242-7
  4. Khatri, R. A.; Chuang, S. S. C.; Soong, Y.; Gray, M. Industrial & Engineering Chemistry Research 2005, 44, 3702. https://doi.org/10.1021/ie048997s
  5. Khatri, R. A.; Chuang, S. S. C.; Soong, Y.; Gray, M. Energy & Fuels 2006, 20, 1514. https://doi.org/10.1021/ef050402y
  6. Plaza, M. G.; Pevida, C.; Arenillas, A.; Rubiera, F.; Pis, J. J. Fuel 2007, 86, 2204. https://doi.org/10.1016/j.fuel.2007.06.001
  7. Broqvist, P.; Panas, I.; Gronbeck, H. Journal of Physical Chemistry B 2005, 109, 15410. https://doi.org/10.1021/jp053178m
  8. Freund , H. J.; Roberts, M. W. Surface Science Reports 1996, 25, 225. https://doi.org/10.1016/S0167-5729(96)00007-6
  9. Broqvist, P.; Gronbeck, H.; Fridell, E.; Panas, I. Journal of Physical Chemistry B 2004, 108, 3523. https://doi.org/10.1021/jp036549c
  10. Karlsen, E. J.; Nygren, M. A.; Pettersson, L. G. M. Journal of Physical Chemistry B 2003, 107, 7795. https://doi.org/10.1021/jp0346716
  11. Tutuianu, M.; Inderwildi, O. R.; Bessler, W. G.; Warnatz, J. Journal of Physical Chemistry B 2006, 110, 17484. https://doi.org/10.1021/jp055268x
  12. Broqvist, P.; Panas, I.; Fridell, E.; Persson, H. Journal of Physical Chemistry B 2002, 106, 137. https://doi.org/10.1021/jp0126457
  13. Gronbeck, H. Journal of Physical Chemistry B 2006, 110, 11977. https://doi.org/10.1021/jp0616415
  14. Perdew, J. P.; Burke, K.; Ernzerhof, M. Chemical Applications of Density-Functional Theory 1996, 629, 453. https://doi.org/10.1021/bk-1996-0629.ch030
  15. Accelrys, Inc. 2005 Dmol3, San Diego.
  16. Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  17. Galasso, F. S. Structure and Properties of Inorganic Solids; Pergamon Press: 1970; Oxford.
  18. Holleman, A. F.; Wiberg, E. Lehrbuch der Anorganischen Chemie; Walter de Gruyter: Berlin, 1995; New York.
  19. Wyckoff, R. W. G. Crystal Structure; Interscience Publishers (John Wiley): 1965; New York.
  20. Pacchioni, G.; Ricart, J. M.; Illas, F. Journal of the American Chemical Society 1994, 116, 10152. https://doi.org/10.1021/ja00101a038
  21. Yanagisawa, Y.; Takaoka, K.; Yamabe, S. Journal of the Chemical Society-Faraday Transactions 1994, 90, 2561. https://doi.org/10.1039/ft9949002561

Cited by

  1. O-Saturated BaO(1 0 0) and Induced Barium Surface Dissociation vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10000
  2. Influence of Sulfonic Acid Group on Sulfonated Polyethersulfone Membrane for PEM Fuel Cell: A First-Principles Study vol.36, pp.8, 2015, https://doi.org/10.1002/bkcs.10415
  3. Density Functional Theory Study on Polybenzimidazole with Sulfonic Acid Functional Group for PEMFC Applications vol.52, pp.3, 2015, https://doi.org/10.12772/TSE.2015.52.137
  4. Development of hydrophilicity on the proton exchange using sulfonic acid on PEEK in the presence of water: a density functional theory study vol.136, pp.11, 2017, https://doi.org/10.1007/s00214-017-2153-4
  5. on graphyne: A density functional theory study vol.7, pp.12, 2017, https://doi.org/10.1063/1.5006839
  6. Competitive Adsorption of CO2 and H2O Molecules on the BaO (100) Surface: A First-Principle Study vol.32, pp.3, 2011, https://doi.org/10.5012/bkcs.2011.32.3.988
  7. Oxygen transport in the internal xenon plasma of a dispenser hollow cathode vol.115, pp.15, 2010, https://doi.org/10.1063/1.4871755
  8. Kinetics of Solid-Gas Reactions and Their Application to Carbonate Looping Systems vol.12, pp.15, 2019, https://doi.org/10.3390/en12152981
  9. Substrate Effect of Platinum-Decorated Carbon on Enhanced Hydrogen Oxidation in PEMFC vol.5, pp.41, 2010, https://doi.org/10.1021/acsomega.0c04131