DOI QR코드

DOI QR Code

Theoretical Studies on MXO4 (M=Li, Na, K and X=F, Cl, Br, I) Salt Ion Pairs

  • Rashid, Mohammad Harun Or (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Ghosh, Manik Kumer (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Choi, Cheol-Ho (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
  • Received : 2010.04.26
  • Accepted : 2010.06.15
  • Published : 2010.08.20

Abstract

The series of alkali metal perhalogenates, $MXO_4$ (M=Li, Na, K and X=F, Cl, Br, I) were theoretically studied with the help of MP2 methods. Bidentate as well as tridentate structures were found to be stable minima. The bidentate structures are becoming preferred as the size of halogen increases and as the size of metal decreases. Geometrically, the M-O and M-X distances of both bidentate and tridentate structures, increase with the size of metal. Generally, the M-$O_1$ distances of tridentate forms are longer than the corresponding distances of bidentate forms, while the M-X distances of tridentate forms show the opposite trend. Similarly, the X-O bonds increase with the size of halogens except $MXO_4$ pairs, where the X-O bonds are unusually long due to the enhanced oxygen-oxygen repulsions. In short, the relative energetics as well as the geometrical parameters are found to be strongly dependent on halogen and metal elements.

Keywords

References

  1. Smith, D.; James, D. W.; Devlin, J. P. J. Chem. Phys. 1971, 54(10), 4437. https://doi.org/10.1063/1.1674694
  2. Ritzhaupt, G.; Devlin, J. P. J. Phys. Chem. 1977, 81(6), 521. https://doi.org/10.1021/j100521a006
  3. Ritzhaupt, G.; Devlin, J. P. J. Phys. Chem. 1986, 90, 6764. https://doi.org/10.1021/j100284a010
  4. Tevault, D. E.; Chi, F. K.; Andrews, L. J. Mol. Spectrosc. 1974, 51(3), 450. https://doi.org/10.1016/0022-2852(74)90200-8
  5. Bencivenni, L.; Gingerich, K. A. J. Mol. Struct. 1983, 98(3-4), 195. https://doi.org/10.1016/0022-2860(83)90117-5
  6. Bencivenni, L.; Gingerich, K. A. Inorg. Chim. Acta 1984, 85, L11. https://doi.org/10.1016/S0020-1693(00)81010-5
  7. Smyrl, N.; Devlin, J. P. J. Phys. Chem. 1973, 77(26), 3067. https://doi.org/10.1021/j100644a008
  8. Ritzhaupt, G.; Richardson, H. H.; Devlin, J. P. High Temp. Sci. 1985, 19(2), 163.
  9. Ritzhaupt, G.; Devlin, J. P. J. Chem. Phys. 1976, 65, 5246. https://doi.org/10.1063/1.433023
  10. Beattie, I. R.; Parkinson, J. E. J. Chem. Soc. Dalton Trans. 1984, 1363.
  11. Bencivenni, L.; Nagarathna, H. M.; Gingerich, K. A.; Teghil, R. J. Chem. Phys. 1984, 81, 3415. https://doi.org/10.1063/1.448065
  12. Ritzhaupt, G.; Devlin, J. P. J. Chem. Phys. 1975, 62, 1982. https://doi.org/10.1063/1.430688
  13. Wang, X. B.; Ding, C. F.; Nicholas, J. B.; Dixon, D. A.; Wang, L. S. J. Phys. Chem. A 1999, 103, 3423. https://doi.org/10.1021/jp990071o
  14. Perutz, M. F. Science 1978, 201, 1187. https://doi.org/10.1126/science.694508
  15. Farnham, W. B.; Smart, B. E.; Middleton, W. J.; Calabrese, J. C.; Dixon, D. A. J. Am. Chem. Soc. 1985, 107, 4565. https://doi.org/10.1021/ja00301a043
  16. Dixon, D. A.; Farnham, W. B.; Heilemann, W.; Mews, R.; Noltemeyer, M. Heteroatom 1993, 4, 287. https://doi.org/10.1002/hc.520040225
  17. Brintzinger, H.; Hester, R. E. Inorg. Chem. 1966, 5, 6.
  18. Rudnyi, E. B.; Sidorov, L. N.; Vovk, O. M. High Temp. USSR 1985, 23, 238.
  19. Rudnyi, E. B.; Vovk, O. M.; Kaibicheva, E. A.; Sidorov, L. N. J. Chem. Thermodyn. 1989, 21, 247. https://doi.org/10.1016/0021-9614(89)90014-1
  20. Hester, R. E.; Krishnan, K. J. Chem. Phys. 1968, 49, 4356. https://doi.org/10.1063/1.1669881
  21. Dain, P. R.; Stipdonk, M. J. V. J. Mol. Struct. 2008, 868, 42. https://doi.org/10.1016/j.theochem.2008.07.038
  22. Solomonik, V. G.; Pogrebnaya, T. P. J. Struct. Chem. 1998, 39, 28. https://doi.org/10.1007/BF02873821
  23. Chabanel, M.; Legoff, D.; Touaj, K. J. Chem. Soc., Faraday Trans. 1996, 92, 4199. https://doi.org/10.1039/ft9969204199
  24. Chabanel, M.; Legoff, D.; Touaj, K. J. Chem. Soc., Faraday Trans. 1996, 92, 4207. https://doi.org/10.1039/ft9969204207
  25. Mitterbock, M.; Fleissner, G.; Hallbrucker, A.; Mayer, E. J. Phys. Chem. B 1999, 103, 8016. https://doi.org/10.1021/jp991399k
  26. Stygar, J.; Żukowska, G.; Weeczorek, W. Solid State Ionics 2005, 176, 2645. https://doi.org/10.1016/j.ssi.2005.07.006
  27. Cvjeticanin, N. D.; Mentus, S. Phys. Chem. Chem. Phys. 1999, 1, 5157. https://doi.org/10.1039/a905454e
  28. Chen, Y.; Zhang, Y.-H.; Zhao, Li-J. Phys. Chem. Chem. Phys. 2004, 6, 537. https://doi.org/10.1039/b311768e
  29. Heinje, G.; Luck, W. A. P.; Heinzinger, K. J. Phys. Chem. 1987, 91, 331. https://doi.org/10.1021/j100286a020
  30. Hofmeister, F. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247. https://doi.org/10.1007/BF01918191
  31. Liu, F.-J.; Wang, J.-S.; Theodorakis, C. W. Environ. Sci. Technol. 2006, 40, 3429. https://doi.org/10.1021/es052538g
  32. Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. https://doi.org/10.1103/PhysRev.46.618
  33. Schmidt, M. W.; Balbridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A., Jr. J. Comput. Chem. 1993, 14, 1347. https://doi.org/10.1002/jcc.540141112
  34. Fletcher, G. D.; Schmidt, M. W.; Gordon, M. S. Adv. Chem. Phys. 1999, 110, 267. https://doi.org/10.1002/9780470141694.ch4