DOI QR코드

DOI QR Code

Synthesis and Chromatographic Characteristics of Multidentate Ligand-Boned Silica Stationary Phases

  • Li, Rong (School of Chemical Engineering, Northwest University) ;
  • Wang, Yan (School of Chemical Engineering, Northwest University) ;
  • Chen, Guo-Liang (School of Chemical Engineering, Northwest University) ;
  • Shi, Mei (School of Chemical Engineering, Northwest University) ;
  • Wang, Xiao-Gang (School of Chemical Engineering, Northwest University) ;
  • Zheng, Jian-Bin (Institute of Analytical Science, Northwest University)
  • Received : 2010.05.09
  • Accepted : 2010.06.09
  • Published : 2010.08.20

Abstract

To improve the separation property and stability of metal chelate Cu(II) column, three new kinds of multidentate aminocarboxy silica columns with cation-exchange properties were synthesized using glutamic acid (Glu), glutamic acidbromoacetic acid (Glu-BAA), glutamic acid-bromosuccinic acid (Glu-BSUA) as ligands and silica gel as matrix. The standard proteins were separated with prepared chromatographic columns. The stationary phases exhibited the metal chelate property after fixing copper ion (II) on the synthesized multidentate ligand silica columns. The binding capacity of immobilized metal ion was related with the dentate number of multidentate ligands. Chromatographic behavior of proteins and the leakage of immobilized metal ion on multidentate chelate Cu(II) columns were affected by the dentate number of multidentate ligands and competitive elution system directly. The results showed that quinquedentate Glu-BSUA-Cu(II) column exhibited better chromatographic property and stability as compared with tridentate Glu-Cu(II) column, tetradentate Glu-BAA-Cu(II) column and commonly used IDA-Cu(II) column.

Keywords

References

  1. Wang, Y.; Li, R.; Chen, G. L.; Wang, X. G. Chin. J. Chem. 2008, 11, 838.
  2. Dursun, E.; Ozben, B.; Monari, E.; Cuoghi, A.; Tomasi, A.; Ozben, T. Acta Histochem. 2010, 112, 178. https://doi.org/10.1016/j.acthis.2008.10.007
  3. Dedieu, A.; Berenguer, F.; Basset, C.; Prat, O.; Quemeneur, E.; Pible, O.; Vidaud, C. J. Chromatogr. A 2009, 1216, 5365. https://doi.org/10.1016/j.chroma.2009.05.023
  4. Kulathingal, J.; Ko, L. W.; Cusack, B.; Yen, S. H. Biochim. Biophys. Acta-Proteins Proteomics 2009, 1794, 211. https://doi.org/10.1016/j.bbapap.2008.09.025
  5. Fang, X. M.; Zhang, W. W. J. Proteomics 2008, 71, 284. https://doi.org/10.1016/j.jprot.2008.06.011
  6. Dong, X. Y.; Chen, L. J.; Sun, Y. J. Chromatogr. A 2009, 1216, 5207. https://doi.org/10.1016/j.chroma.2009.05.008
  7. Kosobokova, E.; Kosorukov, V. New Biotechnol. 2009, 25, 179.
  8. Abe, R.; Kudou, M.; Tanaka, Y.; Arakawa, T.; Tsumoto, K. Biochem. Biophys. Res. Commun. 2009, 381, 306. https://doi.org/10.1016/j.bbrc.2009.01.054
  9. Wang, C. Z.; Wang, L. L.; Geng, X. D. Biochem. Eng. J. 2009, 43, 197. https://doi.org/10.1016/j.bej.2008.09.018
  10. Maja, K.; Vladka, G. P.; Irena, F.; Viktor, M. J. Chromatogr. B 2008, 867, 119. https://doi.org/10.1016/j.jchromb.2008.03.023
  11. Moon, W. J.; Hwang, D. K.; Park, E. J.; Kim, Y. M.; Chae, Y. K. Protein Expres. Purif. 2007, 51, 141. https://doi.org/10.1016/j.pep.2006.07.010
  12. Liang, X. Q.; Fonnum, G.; Hajivandi, M.; Stene, T.; Kjus, N. H.; Ragnhildstveit, E.; Amshey, J. W.; Predki, P.; Pope, R. M. J. Am. Soc. Mass Spectrom. 2007, 18, 1932. https://doi.org/10.1016/j.jasms.2007.08.001
  13. Yu, Z. Y.; Han, G. H.; Sun, S. T.; Jiang, X. N.; Chen, R.; Wang, F. J.; Wu, R. A.; Ye, M. L.; Zou, H. F. Anal. Chim. Acta 2009, 636, 34. https://doi.org/10.1016/j.aca.2009.01.033
  14. Callesen, A. K.; Vach, W.; Jorgensen, P. E.; Cold, S.; Tan, Q. H.; Rene, D. P. C.; Mogensen, O.; Kruse, T. A.; Jensen, O. N.; Madsen, J. S. J. Proteome Res. 2008, 7, 1419. https://doi.org/10.1021/pr7007576
  15. Lee, Y. M.; Venkataraman, K.; Hwang, S.; Han, D. K.; Hla, T. Pro staglandins Other Lipid Mediat. 2007, 84, 154. https://doi.org/10.1016/j.prostaglandins.2007.08.001
  16. Fung, E. T.; Ueland, F. R.; Van, N. J. R.; Depriest, P. D.; Baron, A. T. PCT Int. Appl. 2007, 58.
  17. Pessela, B. C. C.; Mateo, C.; Filho, M.; Carrascosa, A.; Fernandez, L. R.; Guisan, J. M. Enzyme Microb. Technol. 2007, 40, 242. https://doi.org/10.1016/j.enzmictec.2006.04.019
  18. Victor, M. B. G.; Owen, R. D. Biochem. Biophy. Acta 2006, 1760, 1304. https://doi.org/10.1016/j.bbagen.2006.03.027
  19. Oshima, T.; Kanemaru, K.; Tachiyama, H.; Ohe, K.; Baba, Y. J. Chromatogr. B 2008, 876, 116. https://doi.org/10.1016/j.jchromb.2008.10.039
  20. Jiang, W.; Prescott, M.; Devenish, R. J.; Spiccia, L.; Hearn, M. T. W. Biotechnol. Bioeng. 2009, 103, 747. https://doi.org/10.1002/bit.22302
  21. Knecht, S.; Ricklin, D.; Eberle, A. N.; Ernst, B. J. Mol. Recognit. 2009, 22, 270. https://doi.org/10.1002/jmr.941
  22. Roque, A. C. A.; Silva, C. S. O.; Taipa, M. J. Chromatogr. A 2007, 1160, 44. https://doi.org/10.1016/j.chroma.2007.05.109
  23. Devedec, F. L.; Bazinet, L.; Furtos, A.; Venne, K.; Brunet, S.; Mateescu, M. A. J. Chromatogr. A 2008, 1194, 165. https://doi.org/10.1016/j.chroma.2008.03.094
  24. Gutierrez, R.; Del Valle, E. M. M.; Galan, M. A. Sep. Purif. Rev. 2007, 36, 71. https://doi.org/10.1080/15422110601166007
  25. Ueda, E. K. M.; Gout, P. W.; Morganti, L. J. Chromatogr. A 2003, 988, 1. https://doi.org/10.1016/S0021-9673(02)02057-5
  26. Li, R.; Chen, G. L.; Zhao, W. M. Annali. Di. Chimica. 2004, 94, 939. https://doi.org/10.1002/adic.200490116
  27. Fan, J. Talanta 1995, 42, 317. https://doi.org/10.1016/0039-9140(95)01394-Q
  28. Kapinos, L. E.; Song, B.; Sigel, H. Inorg. Chim. Acta 1998, 280, 50. https://doi.org/10.1016/S0020-1693(98)00052-8

Cited by

  1. Evaluation and optimization of the metal-binding properties of a complex ligand for immobilized metal affinity chromatography vol.39, pp.3, 2016, https://doi.org/10.1002/jssc.201501081
  2. Chromatographic Behavior of Proteins on Stationary Phase with Aminocarboxy Ligand vol.32, pp.2, 2010, https://doi.org/10.5012/bkcs.2011.32.2.590