DOI QR코드

DOI QR Code

Delicate Difference in Coordinating Nature between Copper(II) and Nickel(II) Ions. Structural Properties of Copper(II) and Nickel(II) Nitrate Containing 1,2-Bis(dimethyl-3-pyridylsilyl)ethane

  • Kim, Shin-A (Department of Chemistry, Pusan National University) ;
  • Kim, Chi-Won (Department of Chemistry, Pusan National University) ;
  • Noh, Tae-Hwan (Department of Chemistry, Pusan National University) ;
  • Lee, Young-A (Department of Chemistry, Chonbuk National University) ;
  • Jung, Ok-Sang (Department of Chemistry, Pusan National University)
  • Received : 2010.03.16
  • Accepted : 2010.06.04
  • Published : 2010.08.20

Abstract

Studies on the molecular construction and structures of $M(NO_3)_2$ (M = Cu(II), Ni(II)) complexes with 1,2-bis(dimethyl-3-pyridylsilyl)ethane (L) have been carried out. Formation of each molecular skeleton appears to be primarily associated with a suitable combination of bidentate N-donors of L and coordinating nature of octahedral metal(II) ions: [$Cu(NO_3)_2(L)_2$] yields a 2-dimensional sheet structure consisting of 44-membered $Cu_4L_4$ skeleton whereas $[Ni(L)_2(H_2O)_2](NO_3)_2$ produces an interpenetrated 3-dimensional structure consisting of 66-membered cyclohexanoid ($M_6L_6$) skeleton. The Cu(II) ion prefers nitrate whereas the Ni(II) ion prefers water molecules as the fifth and the sixth ligands.

Keywords

References

  1. Stang, P. J.; Olenyuk, B. Acc. Chem. Res. 1997, 30, 502. https://doi.org/10.1021/ar9602011
  2. Jones, C. J. Chem. Soc. Rev. 1998, 27, 289. https://doi.org/10.1039/a827289z
  3. Slone, R. V.; Yoon, D. I.; Calhoun, R. M.; Hupp, J. T. J. Am. Chem. Soc. 1995, 117, 11813. https://doi.org/10.1021/ja00152a027
  4. Gale, P. A. Coord. Chem. Rev. 2001, 213, 79. https://doi.org/10.1016/S0010-8545(00)00364-7
  5. Fujita, M. Chem. Soc. Rev. 1998, 27, 417. https://doi.org/10.1039/a827417z
  6. Jung, O.-S.; Kim, Y. J.; Lee, Y.-A; Park, J. K.; Chae, H. K. J. Am. Chem. Soc. 2000, 122, 9921. https://doi.org/10.1021/ja001618b
  7. Pykko, P. Chem. Rev. 1997, 97, 597. https://doi.org/10.1021/cr940396v
  8. Orr, G. W.; Barbour, L. J.; Atwwod, J. L. Science 1999, 285, 1049. https://doi.org/10.1126/science.285.5430.1049
  9. Bradshow, D.; Claridge, J. B.; Cussen, E. J.; Prior, T. J.; Rosseinsky, M. J. Acc. Chem. Res. 2005, 38, 273. https://doi.org/10.1021/ar0401606
  10. Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276. https://doi.org/10.1038/46248
  11. Abrahams, B. F.; Hoskins, B. F.; Michail, D. L.; Robson, R. Nature 1994, 369, 727. https://doi.org/10.1038/369727a0
  12. Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148. https://doi.org/10.1126/science.283.5405.1148
  13. Batten, S. R.; Robson, R. Angew. Chem., Int. Ed. 1998, 37, 1460. https://doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z
  14. Albrecht, M. Angew. Chem., Int. Ed. 1999, 38, 3463. https://doi.org/10.1002/(SICI)1521-3773(19991203)38:23<3463::AID-ANIE3463>3.0.CO;2-E
  15. Kiang, Y.-H.; Gardener, G. B.; Lee, S.; Xu, Z. J. Am. Chem. Soc. 2000, 122, 6871. https://doi.org/10.1021/ja0009119
  16. Braga, D.; Grepioni, F. Acc. Chem. Res. 2000, 33, 601. https://doi.org/10.1021/ar990143u
  17. Schmidtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609. https://doi.org/10.1021/cr9603845
  18. Lapointe, R. E.; Roof, G. R.; Abboud, K. A.; Klosin, J. J. Am. Chem. Soc. 2000, 122, 9560. https://doi.org/10.1021/ja002664e
  19. Mason, S.; Cliford, T.; Seib, L.; Kuczera, K.; Bowman-James, K. J. Am. Chem. Soc. 1998, 120, 8899. https://doi.org/10.1021/ja9811593
  20. Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Chae, H. K.; Jang, H. G.; Hong, J. Inorg. Chem. 2001, 40, 2105. https://doi.org/10.1021/ic001072u
  21. Jung, O.-S.; Lee, Y.-A.; Kim, Y. J.; Hong, J. Cryst. Growth Des. 2002, 2, 497. https://doi.org/10.1021/cg025555f
  22. Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Kang, S. W.; Choi, S. N. Cryst. Growth Des. 2004, 4, 23. https://doi.org/10.1021/cg0341048
  23. Lee, Y.-A.; Kim, S. A.; Jung, S. M.; Jung, O.-S.; Oh, Y. H. Bull. Korean Chem. Soc. 2004, 25, 581. https://doi.org/10.5012/bkcs.2004.25.4.581
  24. Schmitz, M.; Leninger, S.; Fan, J.; Arif, A. M.; Stang, P. J. Organometallics 1999, 18, 4817. https://doi.org/10.1021/om990567s
  25. Kwon, J. A.; Jung, H. J.; Jung, O.-S.; Lee, Y.-A. J. Mol. Struct. 2008, 878, 60. https://doi.org/10.1016/j.molstruc.2007.07.033
  26. Sheldrick, G. M. SHELXS-97: A Program for Structure Determination; University of Gottingen, Germany, 1997
  27. Sheldrick, G. M. SHELXL-97: A Program for Structure Refinement; University of Gottingen, Germany, 1997.
  28. Delgado-Friedrichs, O.; O'Keeffe, M. Acta Cryst. 2005, A61, 358.
  29. Shriver, D. F., Atkins, P. W., Overton, T. L., Rourke, J. P., Weller, M. T., Armstrong, F. A., Eds.; Inorganic Chemistry, 4th ed.; Oxford University Press: UK, 2006; p 467.

Cited by

  1. Homoleptic ligands vs heteroleptic ligands on coordination polymerizations: Construction and properties of silver(I) coordination polymers containing dialkylbis(4-pyridy)silanes vol.1062, pp.None, 2010, https://doi.org/10.1016/j.molstruc.2014.01.039