References
- Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103. https://doi.org/10.1021/cr0300789
- Schreiber, F. J. Phys.: Condens. Matter 2004, 16, R881. https://doi.org/10.1088/0953-8984/16/28/R01
- Choi, Y.; Jeong, Y.; Chung, H.; Ito, E.; Hara, M.; Noh, J. Langmuir 2008, 24, 91. https://doi.org/10.1021/la701302g
- Kang, H.; Lee, N. S.; Ito, E.; Hara, M.; Noh, J. Langmuir 2010, 26, 2983. https://doi.org/10.1021/la903952c
- Choi, Y.; Kang, H.; Choi, I.; Lee, N.-S.; Cho, J.-H.; Jan, C.-H.; Noh, J. Bull. Korean Chem. Soc. 2010, 31, 901. https://doi.org/10.5012/bkcs.2010.31.04.901
- Noh, J.; Hara, M. Langmuir 2002, 18, 1953. https://doi.org/10.1021/la010803f
- Noh, J.; Kato, H. S.; Kawai, M.; Hara, M. J. Phys. Chem. B 2006, 110, 2793. https://doi.org/10.1021/jp055538b
- Yamada, R.; Wano, H.; Uosaki, K. Langmuir 2000, 16, 5523. https://doi.org/10.1021/la991394e
- Bain, C. D.; Troughton, E. B.; Tao, Y.-T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. J. Am. Chem. Soc. 1989, 111, 321. https://doi.org/10.1021/ja00183a049
- Peterlinz, K. A.; Georgiadis, R. Langmuir 1996, 12, 4731. https://doi.org/10.1021/la9508452
- Dannenberger, O.; Wolff, J. J.; Buck, M. Langmuir 1998, 14, 4679. https://doi.org/10.1021/la980532h
- Yamada, R.; Sakai, H.; Uosaki, K. Chem. Lett. 1999, 28, 667. https://doi.org/10.1246/cl.1999.667
- Noh, J.; Konno, K.; Ito, E.; Hara, M. Jpn. J. Appl. Phys. 2005, 44, 1052. https://doi.org/10.1143/JJAP.44.1052
- Jeong, Y.; Chung, H.; Noh, J. Colloid Surf. A: Physicochem. Eng. Asp. 2008, 313-314, 608. https://doi.org/10.1016/j.colsurfa.2007.04.132
- Dai, J.; Li, Z.; Jin, J.; Cheng, J.; Kong, J.; Bi, S. J. Electroanal. Chem. 2008, 624, 315. https://doi.org/10.1016/j.jelechem.2008.07.001
- Qian, Y.; Yang, G.; Jung, T. A.; Liu, G.-y. Langmuir 2003, 19, 6056. https://doi.org/10.1021/la0267701
- Choi, J.; Lee, Y. J.; Kang, H.; Han, J. W.; Noh, J. Bull. Korean Chem. Soc. 2008, 29, 1229. https://doi.org/10.5012/bkcs.2008.29.6.1229
- Noh, J.: Hara, M. Langmuir 2000, 16, 2045. https://doi.org/10.1021/la991423l
Cited by
- Effects of Solvent on the Formation of Octanethiol Self-Assembled Monolayers on Au(111) at High Temperatures in a Closed Vessel: A Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy Study vol.116, pp.42, 2012, https://doi.org/10.1021/jp307940g
- Growth, solvent effects, and thermal desorption behavior of octylthiocyanate self-assembled monolayers on Au(111) vol.15, pp.10, 2013, https://doi.org/10.1039/c3cp44425b
- Effects of solvent on the formation of the MUA monolayer on Si and its diffusion barrier properties for Cu metallization vol.10, pp.3, 2014, https://doi.org/10.1007/s13391-013-3339-0
- Unique Mixed Phases and Structures of Self-Assembled Monolayers on Au(111) Derived from Methoxy-terminated Mono(ethylene glycol)ethanethiols vol.121, pp.33, 2017, https://doi.org/10.1021/acs.jpcc.7b05817
- Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs vol.9, pp.35, 2017, https://doi.org/10.1021/acsami.7b01583
- Direct Adsorption and Molecular Self-Assembly of Octylthioacetates on Au(111) in the Vapor Phase vol.32, pp.1, 2010, https://doi.org/10.5012/bkcs.2011.32.1.39
- Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111) vol.32, pp.4, 2010, https://doi.org/10.5012/bkcs.2011.32.4.1253
- Formation and Structure of Highly Ordered Self-Assembled Monolayers by Adsorption of Acetyl-Protected Conjugated Thiols on Au(111) in Tetrabutylammonium Cyanide Solution vol.123, pp.14, 2010, https://doi.org/10.1021/acs.jpcc.9b00521