A Study on the Optimization of Silicon Antiresonant Reflecting Optical Waveguides (ARROW) for Integrated Optical Sensor Applications

집적광학 센서 응용에 적합한 실리콘 비공진 반사형 광도파로 최적화에 관한 연구

  • 정홍식 (홍익대학교 전자전기공학과)
  • Received : 2010.08.03
  • Accepted : 2010.10.15
  • Published : 2010.10.31

Abstract

We optimized the Si(substrate)/$SiO_2$(cladding)/$Si_3N_4$(antiresonant cladding)/$SiO_2$(core)/air multi-layers rib-optical waveguides of antiresonant reflecting optical waveguide (ARROW) for integrated optical biosensor structure utilizing beam propagation method (BPM). Thickness of anti-resonant cladding was derived to minimize the propagation loss and leaky field mode deeply related with evanescent mode was theoretically derived. Depth, width, refractive index and cladding thickness of anti-resonant cladding were numerically calculated into 2.3${\mu}m$, 5${\mu}m$, 1.488, and 0.11${\mu}m$ respectively to minimize propagation loss using the BPM simulation tool. Finally one- and two-dimensional propagation characteristics of ARROW was confirmed.

집적광학 바이오센서 구조에 적합한 비공진 반사 광도파로(ARROW: Antiresonant Reflecting Optical Waveguides)의 Si(기판)/$SiO_2$(클래딩)/$Si_3N_4$(비공진 클래딩)/$SiO_2$(코어)/air 다층박막 립 광도파로에 대한 최적화를 BPM 전산해석 방법을 이용해서 수행하였다. 전송손실을 최소화하기에 적합한 비 공진 클래딩의 두께를 유도하였으며, 소산파와 깊은 관련이 있는 손실모드에 대해서 이론적으로 검토하였다. 전산해석을 통해서 전송손실을 최소화하기 위한 립 광도파로의 깊이, 폭, 굴절률과 클래딩의 두께를 각각 2.3${\mu}m$, 5${\mu}m$, 1.488, 그리고 0.11${\mu}m$로 계산되었다. 최적화된 제원으로 비공진 반사 광도파로의 2차원, 3차원 전송특성을 확인하였다.

Keywords

References

  1. R.G. Heidman and P.V. Lambeck, "Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system," Sensors and Actuators B 61, pp. 100-127, 1999. https://doi.org/10.1016/S0925-4005(99)00283-X
  2. F Prieto, et al, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology 14, pp. 907-912, 2003. https://doi.org/10.1088/0957-4484/14/8/312
  3. F Prieto, et al, "Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications," Sensors and Actuators B 92, pp. 151-158, 2003. https://doi.org/10.1016/S0925-4005(03)00257-0
  4. B Sepulveda, et al, "Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices," J. Optics A, pp. 561-566, Aug. 2006. https://doi.org/10.1088/1464-4258/8/7/S41
  5. P.K. Tien, "Light wavesin thin films and integrated optics," Applied Optics, Vol. 10, No. 11, pp. 2395-2413, Nov. 1971. https://doi.org/10.1364/AO.10.002395
  6. Albert Min-Hsien Young, "Microfabricated pressure transducers based on anti-resonant reflecting optical waveguides," Ph.D. Thesis, Massachusetts Institute of Technology, 1994.
  7. J. L. Archambault, et al, "Loss calculations for antiresonant waveguides," J. Lightwave Tech., Vol. 11, No. 3, pp. 416-423, Mar. 1993. https://doi.org/10.1109/50.219574
  8. T. Baba and Y. Kokubun, "Scattering loss of antiresonant reflecting optical waveguides," J. Lightwave Tech., Vol. 9, No. 5, pp. 590-597, May 1991. https://doi.org/10.1109/50.79535
  9. Katsunari Okamoto, Fundamentals of Optical Waveguides, second edition, Academic Press, pp. 329-397, 2006.