초록
자동차 환경에서의 음성인식은 잡음처리가 매우 중요한 요소이다. 하드웨어 및 소프트웨어로 적인 접근방법으로 많은 연구가 되어 지고 있다. 하드웨어적인 방법으로는 Low-pass filter를 기본으로한 잡음처리 필터가 많이 연구되어 가시적인 성과를 보이고 있고, 소프트웨어적으로는 Noise canceler, 신경망 등 패턴인식 알고리듬의 연구가 이루어지고 있다. 본 논문에서는 시계열 패턴인식에 적용 가능한 알고리듬인 DTW(Dynamic Time Warping)를 자동차 잡음환경에 적용하여 그 음성인식을 위한 파라미터 패턴에 대한 매칭 레벨을 분류하여 잡음환경 적합한 패턴 매칭 레벨을 분석 하였다.
Noise handing is very important in voice recognition of vehicle environment. that has been studying about to hardware and software approach. hardware method that is noise filter circuit design, basically using Low-pass filter. it was shown a good result. and the side of software that has been developing about to algorithm for Noise canceler, NN(neural network), etc. in this paper we have analysis about to classified parameter pattern matting level for voice recognition on car noise environment that use of DTW(Dynamic Time Warping) which is applicable time series pattern recognition algorithm.