Study of Inhibitory Effect of Melanogenesis and Antioxidant Activity of Agrimonia pilosa Ledeb

선학초 추출물의 멜라닌합성 억제 및 항산화효과

  • Kim, Dae-Sung (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Kim, Yeong-Mok (Department of Oriental Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Woo, Won-Hong (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Mun, Yeun-Ja (Department of Anatomy, College of Oriental Medicine, Wonkwang University)
  • 김대성 (원광대학교 한의학전문대학원 한약자원개발학과) ;
  • 김영목 (원광대학교 한의과대학 병리학교실) ;
  • 우원홍 (원광대학교 한의학전문대학원 한약자원개발학과) ;
  • 문연자 (원광대학교 한의과대학 해부학교실)
  • Received : 2010.02.18
  • Accepted : 2010.04.07
  • Published : 2010.04.25

Abstract

The purpose of this study was to investigate the mechanism of ethanol extract of Agrimonia pilosa Ledeb. (EAP)-reduced melanogenesis and diphenyl-picryl-hydrazyl (DPPH) radical scavenging activity. Agrimonia pilosa Ledeb., a perennial herbaceous plant, has been used as an antihemorrhagic, anthelminntic, and antiinflammatory agents in Chinese herbal medicine. In the present study, we observed that melanin synthesis and tyrosinase activity of B16F10 cells were significantly decreased by EAP. However, EAP could not suppress tyrosinase activity in the cell-free system, whereas kojic acid directly inhibited tyrosinase activity. Furthermore, EAP decreased the protein expression of tyrosinase, tyrosinase-related prootein 1 (TRP-1), and tyrosinase-related prootein 2 (TRP-2). EAP scavenged DPPH radical up to 41% with 100 ${\mu}g/m{\ell}$ concentration. These results suggest that the hypopigmentary effect of EPA was due to regulation of tyrosinase protein.

Keywords

References

  1. Bell, A.A., Weeler, M.H. Biosynthesis and function of fungal melanin, Ann Rev Phtophathol 24: 411-451, 1986. https://doi.org/10.1146/annurev.py.24.090186.002211
  2. Chen, J.S., Wei, C., Marshall, M.R. Inhibition mechannism of Kojic acid on polyphenol oxidase. J Agric Food Chem 39: 1897-1901, 1991. https://doi.org/10.1021/jf00011a001
  3. Urabe, K., Aroca, P., Tsukamoto, K., Mascagna, D., Paulumbo, A., Prota, G., Hearing, V.J. The inherent cytotoxicty of melanin precursors. Biochim Biophys Acta 1221: 272-278, 1994. https://doi.org/10.1016/0167-4889(94)90250-X
  4. Alaluf, S., Heath, A., Carter, N., Atkins, D., Mahalingam, H., Barrett, K., Kolb, R., Smit, N. Variation in melanin content and composition in type V and VI photoexposed and photoprotected human skin: the dominant role of DHI. Pigment Cell Res 14: 337-347, 2001. https://doi.org/10.1034/j.1600-0749.2001.140505.x
  5. Maeda, K., Fukuda, M. Arbutin: mechanism of its depigmenting action in human melanocyte culture. J Pharmacol Exp Ther 276: 765-769, 1996.
  6. Battaini, G., Monzani, E., Casella, L., Santagostini, L., Pagliarin, R. Inhibition of the catecholase activity of biomimetic dinuclear copper complexes by kojic acid. J Biol Inorg Chem 5: 262-268, 2000. https://doi.org/10.1007/s007750050370
  7. Ando, H., Funasaka, Y., Oka, M., Ohashi, A., Furumura, M., Matsunaga, J., Matsunaga, N., Hearing, V.J., Ichihashi, M. Possible involvement of proteolytic degradation of tyrosinase in the regulatory effect of fatty acids on melanogenesis. J Lipid Res 40: 1312-1316, 1999.
  8. Ando, H., Wen, Z.M., Kim, H.Y., Valencia, J.C., Costin, G.E., Watabe, H., Yasumoto, K., Niki, Y., Kondoh, H., Ichihashi, M., Hearing, V.J. Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin-proteasome pathway. Biochem J 394: 43-50, 2006. https://doi.org/10.1042/BJ20051419
  9. Kim, D.S., Park, S.H., Kwon, S.B., Park, E.S., Huh, C.H., Youn, S.W., Park, K.C. Sphingosylphosphorylcholine-induced ERK activation inhibits melanin synthesis in human melanocytes. Pigment Cell Res 29: 147-153, 2006.
  10. Kang, B.S. Medical herbs. Young-Rym-Sa, seoul pp 384-386, 1992.
  11. Pei, Y.H., Li, X., Zhu, T.R. Studies on the structure of a new ellagic acid glycoside from the root sprouts of Agrimonia pilosa Ledeb. Yao Xue Xue Bao 25: 798-800, 1990.
  12. Min, B.S., Kim, Y.H., Tomiyama, M., Nakamura, N., Miyashiro, H., Otake, T., Hattori, M. Inhibitory effects of Korean plants on HIV-1 activities. Phytother Res 15: 481-486, 2001. https://doi.org/10.1002/ptr.751
  13. Swanston-Flatt, S.K., Day, C., Bailey, C.J., Flatt, P.R. Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia 33: 462-464, 1990. https://doi.org/10.1007/BF00405106
  14. Cao, L.H., Lee, J.K., Cho, K.H., Kang, D.G., Kwon, T.O., Kwon, J.W., Kim, J.S., Sohn, E.J., Lee, H.S. Mechanism for the Vascular Relaxation Induced by Butanol Extract of Agrimonia pilosa. Kor J Pharmacogn 37: 67-73, 2006.
  15. Lee, E.S., Seo, B.I. Growth inhibition of Escherichia coli KCTC 2441 by Agrimonia pilosa Ledeb. extract. Kor J Herbology 18: 15-20, 2003.
  16. Bae, J.H., Sohn, M.A. Effect of Agrimonia Pilosa Ledeb. Extract on the Growth of Food-Borne Pathogens. Korean J Nutr 38: 112-116, 2005.
  17. Park, E.J., Oh, H., Kang, T.H., Sohn, D.H., Kim, Y.C. An isocoumarin with hepatoprotective activity in Hep G2 and primary hepatocytes from Agrimonia pilosa. Arch Pharm Res 27: 944-946, 2004. https://doi.org/10.1007/BF02975848
  18. Mosmann, T. Rapid colorimetric assay for cellular growth and survival : application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63, 1983. https://doi.org/10.1016/0022-1759(83)90303-4
  19. Martínez-Esparza, M., Jiménez-Cervantes, C., Solano, F., Lozano, J.A., García-Borrón, J.C. Mechanisms of melanogenesis inhibition by tumor necrosis factor-alpha in B16/F10 mouse melanoma cells. Eur J Biochem 255: 139-146, 1998. https://doi.org/10.1046/j.1432-1327.1998.2550139.x
  20. Hosoi, J., Abe, E., Suda, T., Kuroki, T. Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihydroxyvitamin D3 and retinoic acid.. Cancer Res 45: 1474-1478, 1985.
  21. Blosis, M.S. Antioxidant determination by the use a stable free radical. Nature 26: 1199-1200, 1958.
  22. Kim, H.J., Lim, H.W., Kim, B.H., Kim, H.S., Choi, S.W., Yoon, C.S. Studies on the anti-acne effect of Agrimonia pilosa Ledeb. J. Soc. Cosmet 32: 53-58, 2006.
  23. Maeda, K., Fukuda, M. In vivo effectiveness of several whitening cosmetic components in human melanocytes. J Soc Cosmet Chem 42: 361-368, 1991.
  24. Ha, S.K., Moon, E.J., Lee, M.J., Park, H.M., Yoo, E.S., Oh, M.S., Kim, S.Y. Effect of the BuOH Soluble Fraction of Cinnamomum camphora on Melanin Biosynthesis. Korean J Medicinal Crop Sci 17: 293-300, 2009.
  25. 유인식, 박시준, 문연자, 고준석, 신기돈, 이장천, 우원홍, 임규상. 싸리꽃 추출물의 tyrosinase 활성 및 멜라닌합성 억제 효과. 동의생리병리학회지 21: 1142-1147, 2007.
  26. 노성택, 김대성, 이성진, 박대중, 이장천, 임규상, 우원홍, 문연자. 교맥 에탄올 추출물의 피부 미백기전 연구. 동의생리병리학회지 21: 1243-1249, 2007.
  27. Chin, J.E., Cho, N.C. Effect of Houttuynia cordata extracts on tyrosinase gene expression. J Korean Soc Food Sci Nutr 34: 1284-1288, 2005. https://doi.org/10.3746/jkfn.2005.34.8.1284
  28. Busca, R., Ballotti, R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 13: 60-69, 2000. https://doi.org/10.1034/j.1600-0749.2000.130203.x
  29. Sassone-Corsi, P. Coupling gene expression to cAMP signalling: role of CREB and CREM. Int J Biochem Cell Biol 30: 27-38, 1998. https://doi.org/10.1016/S1357-2725(97)00093-9
  30. Bertolotto, C., Busca, R., Abbe, P., Bille, K., Aberdam, E., Ortonne, J.P., Ballotti, R. Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol Cell Biol 18: 694-702, 1998. https://doi.org/10.1128/MCB.18.2.694
  31. Kim, D.S., Kim, S.Y., Chung, J.H., Kim, K.H., Eun, H.C., Park, K.C. Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes. Cell Signal 14: 779-785, 2002. https://doi.org/10.1016/S0898-6568(02)00024-4
  32. Chi, H.Y., Kim, K.H., Kong, W.S., Kim, S.L., Kim, J.A., Chung, I.M. and Kim, J.T. Antioxidant activity and total phenolic compound of P. eryngii spp. extracts. Kor J Crop Sci 50: 216-219, 2005.