Analysis of Patents regarding Stabilization Technology for Steep Slope Hazards

급경사지재해 안정화기술에 대한 특허분석

  • Song, Young-Suk (Geologic Environment Division, Korea Inst. of Geoscience and Mineral Res) ;
  • Kim, Jae-Gon (Geologic Environment Division, Korea Inst. of Geoscience and Mineral Res)
  • 송영석 (한국지질자원연구원 지구환경연구본부) ;
  • 김재곤 (한국지질자원연구원 지구환경연구본부)
  • Received : 2010.06.29
  • Accepted : 2010.08.29
  • Published : 2010.09.30

Abstract

We analyzed patent trends regarding stabilization technology for steep slope hazards, focusing on patents applied for and registered in Korea, the USA, Japan, and Europe. The technology was classified into four groups at the second classification step: prediction techniques, instrumentation techniques, countermeasure/reinforcement/mitigation techniques, and laboratory tests. A total of 2,134 patents were selected for the final effective analysis. As a result of portfolio analysis using the correlation between the number of patents and the applicant for each patent, the Korean and USA situations were classified as belonging to the developing period, and the Japanese and European situations were classified as belonging to the ebbing period. In particular, patent activity in Korea has been enlivened by government-led research. As a result of technology analysis at the second classification step, prediction techniques arising from Japan are evaluated as a competitive power technique, and laboratory tests arising from the USA are evaluated as a competitive power technique. However, prediction techniques and laboratory tests arising from Korea are evaluated as a blank technique. According to the prediction results regarding future research and developments, a new finite element analysis method and a numerical model should be established as part of prediction techniques, as well as sensors, and hazard prediction should be developed by integrating information and equipment using IT technology as part of instrumentation techniques. In addition, improvements to existing structures for erosion control and the development of new slope-reinforcement methods are required as part of countermeasure/reinforcement/mitigation techniques, and new laboratory apparatus and methods with an optimizing structure should be developed as part of laboratory tests.

본 연구에서는 급경사지재해 안정화기술 분야에 관하여 한국, 미국, 일본 및 유럽에서 출원 공개/등록된 특허를 중심으로 특허동향을 분석하였다. 중분류는 예측기술, 계측기술, 대책/보강/저감기술, 실내실험과 같이 4개로 분류하였으며, 2,134건의 최종 유효 분석대상 특허를 선별하였다. 특허건수와 출원인수의 상관관계를 이용한 포트폴리오 분석결과 한국 및 미국의 경우 발전기 단계에 있으며, 일본과 유럽의 경우 퇴조기에 있는 것으로 분석되었다. 한국의 경우 국가주도의 연구 활동으로 인하여 특허활동이 활발한 것으로 분석된다. 중분류 기술 분야별 분석 결과, 일본은 급경사재해 예측분야, 미국은 급경사재해 실내실험분야가 각 국가의 경쟁력 분야인 것으로 분석되었으며, 한국의 경우 급경사재해 예측과 급경사재해 실내실험 분야가 공백기술인 것으로 분석되었다. 분석결과를 토대로 기술별 향후 연구개발 방향을 정리하면 예측기술 분야에서는 신규 유한요소해석 방법 또는 수치해석 모델 정립이 필요하고, 계측기술 분야에서는 센서개발기술, 정보취합을 통한 재해예측기술, IT기술과 융합을 통한 장치관련 기술 등이 필요하다. 그리고 재해/대책/저감기술 분야에서는 기존 사방구조물의 개량, 차별화된 사면보강공법 등의 개발이 필요하며 실내실험분야에서는 새로운 최적화된 구조의 실험장치 또는 방법의 개발이 필요한 것으로 조사되었다.

Keywords

References

  1. 송영석, 2003, 활동억지시스템으로 보강된 사면의 설계법, 중앙대학교 대학원 토목공학과 박사학위논문. 348p.
  2. 전성해, 엄대호, 2010, 특허와 통계학, 그 연결은?, 한국통계학회 논문집, 17(2), 205-222.
  3. 채병곤, 조용찬, 송영석, 김경수, 이춘오, 이병주, 김만일, 서용석, 서광원, Liu, K.F., 2009, 산사태재해 예측 및 저감기술 개발(NEMA-06-NH-04), 자연재해저감기술 개발, 소방방재청, 598p.
  4. 홍원표, 한중근, 1994, 한국에서 실시되고 있는 산사태방지대책공법, Proc. East Asia Symposium and Field Workshop on Landslides and Debris Flows, Seoul, Korea, 155-210.
  5. Catane, S.G., Cabria, H.B., Tomarong, C.P., Saturay, R.M., Zarco, M.A.H. and Pioquinto, W.C., 2007, Catastrophic rockslide-debris avalanche at St. Bernard, Southern Leyte, Philippines, Landslides, 4. 85-90. https://doi.org/10.1007/s10346-006-0050-3
  6. Chen, A.S., Li, T.C. and Gao, Y.C., 2005, A great disastrous debris flow on 11 July 2003 on Shuikazi valley, Danba county, western Sichuan, China, Landslides, 2, 71-74. https://doi.org/10.1007/s10346-004-0041-1
  7. Hong, W.P., 1999, Slope stabilization to control landslides in Korea, Geotechnical Engineering Case Histories in Korea; Special Prublication to commemorate the 11th Asia Regional Conference on Soil Mechanics and Geotechnical Engineering, Seoul, Korea, 141-152.
  8. Hong, Y., Hiura, H., Shino, K., Sassa, K and Fukuoka, H., 2005, Quantitative assessment on the influence of heavy rainfall on the crystalline schist landslide by monitoring system -case study on Zentoku landslide, Japan, Landslides, 2, 31-41. https://doi.org/10.1007/s10346-005-0044-6
  9. Kang, G.C., Song, Y.S. and Kim, T.H., 2009, Behavior and stability of a large-scale cut slope considering reinforcement stages, Landslides, 6, 263-272. https://doi.org/10.1007/s10346-009-0164-5
  10. Lade, P.V., 2010, The mechanics of surficial failure in soil slopes, Engineering Geology, 114, 57-64. https://doi.org/10.1016/j.enggeo.2010.04.003
  11. Macfarlane, D.F., 2009, Observation and perdictions of the behaviour of large, slow-moving landslides in schist, Clyde Dam reservoir, New Zealand, Engineering Geology, 109, 5-15. https://doi.org/10.1016/j.enggeo.2009.02.005
  12. Park, D.G., Oh, J.R., Son, Y.J., Park, J.H. and Lee, M.S., 2008, Steep slope management system in Korea, Proc. on the 2nd East Asia Landslides Symposium, Seoul, Korea, 7-11.
  13. Petrov, B., 1982, The advent of the technology portfolio, Journal of Business Strategy, 3, 70-75.
  14. Salcedo, D.A., 2009, Behavior of a landslide prior to inducing a viaduct failure, Caracas-La Guaira highway, Venezuela, Engineering Geology, 109, 16-30. https://doi.org/10.1016/j.enggeo.2009.02.001
  15. Xu, Q. and Zhang, L., 2010, The mechanism of a railway landslide caused by rainfall, Landslides, 7, 149-156. https://doi.org/10.1007/s10346-010-0195-y