DOI QR코드

DOI QR Code

Characterization of Sporulation-Specific Glucoamylase of Saccharomyces diastaticus

Saccharomyces diastaticus의 포자형성 특이 글루코아밀라제의 특성

  • Kim, Eun-Ju (Department of Chemical Education, College of Education, Daegu University) ;
  • Ahn, Jong-Seog (Chemical Biology Research Center, Bio-Therapeutics Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kang, Dae-Ook (Department of Biochemistry and Health Science, College of Natural Sciences, Changwon National University)
  • 김은주 (대구대학교 사범대학 화학교육과) ;
  • 안종석 (한국생명공학연구원 바이오의약연구소 화학생물연구센터) ;
  • 강대욱 (창원대학교 자연과학대학 보건의과학과)
  • Received : 2010.04.30
  • Accepted : 2010.05.12
  • Published : 2010.05.31

Abstract

The yeast strains of Saccharomyces diastaticus produce one of three isozymes of an extracellular glucoamylase I, II or III, a type of exo-enzyme which can hydrolyse starch to generate glucose molecules from non-reducing ends. These enzymes are encoded by the STA1, STA2 and STA3 genes. Another gene, sporulation-specific glucoamylase (SGA), also exists in the genus Saccharomyces which is very homologous to the STA genes. The SGA has been known to be produced in the cytosol during sporulation. However, we hypothesized that the SGA is capable of being secreted to the extracellular region because of about 20 hydrophobic amino acid residues at the N-terminus which can function as a signal peptide. We expressed the cloned SGA gene in S. diastaticus YIY345. In order to compare the biochemical properties of the extracellular glucoamylase and the SGA, the SGA was purified from the culture supernatant through ammonium sulfate precipitation, DEAE-Sephadex A-50, CM-Sephadex C-50 and Sephadex G-200 chromatography. The molecular weight of the intact SGA was estimated to be about 130 kDa by gel filtration chromatography with high performance liquid chromatography (HPLC) column. Sodium dedecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed it was composed of two heterogeneous subunits, 63 kDa and 68 kDa. The deglycosylation of the SGA generated a new 59 kDa band on the SDS-PAGE analysis, indicating that two subunits are glycosylated but the extent of glycosylation is different between them. The optimum pH and temperature of the SGA were 5.5 and $45^{\circ}C$, respectively, whereas those for the extracellular glucoamylase were 5.0 and $50^{\circ}C$. The SGA were more sensitive to heat and SDS than the extracellular glucoamylase.

효모 Saccharomyces diastaticus 는 세포 외로 분비되는 glucoamylase I, II, III 동위효소 중 하나를 생산하여 전분을 가수분해하여 포도당을 생성할 수 있다. Glucoamylase I, II, III는 STA1, STA2, STA3 유전자에 의해 각각 암호화된다. 효모 Saccharomyces 속이 포자가 형성되는 시기에 세포 내에서 특이적으로 발현된다고 알려진 glucoamylase (SGA)의 분자생물학적 및 생화학적 연구를 수행하기 위한 일환으로 S. diastaticus YIY 345 형질전환체의 배양 상등액으로부터 SGA 정제를 시도하였다. 황산암모늄 침전, DEAE-Sephadex A-50, CM-Sephadex C-50, Sephadex G-200 chromatography 등의 정제과정을 거쳐서 비특이 활성이 174배 증가된 0.22 mg의 순수한 SGA를 얻었다. HPLC와 SDS-PAGE 분석을 통해 이 효소는 63, 68 kDa의 단위체로 구성된 이합체임을 확인할 수 있었다. Con-A Sepharose 친화성 크로마토그피와 탈당쇄 효소를 처리한 결과로부터 SGA는 N-연결형 당쇄로 수식되었으며 단백질 부분은 59 kDa이었다. 정제한 SGA와 세포 외 분비성 glucoamylase의 효소학적 특성을 조사하고 비교한 결과 SGA의 최적 pH와 온도는 각각 5.5와 $45^{\circ}C$로 나타났으며 세포 외 분비성 glucoamylase는 5.0과 $50^{\circ}C$로 나타났다. SGA는 세포 외로 분비되는 glucoamylase에 비해 열처리 및 SDS에 대해 더 민감한 반응성을 나타내었다.

Keywords

References

  1. Colonna, W. J. and P. T. Magee. 1978. Glycogenolytic enzymes in sporulating yeast. J. Bacteriol. 134, 844-853.
  2. Da Silva, T. M., A. Maller, A. R. de Lima Damasio, M. Michelin, R. J. Ward, I. Y. Hirata, and M. L. de polizeli. 2009. Properties of a purified thermostable glucoamylase from Aspergillus niveus. J. Ind. Microbiol. Biotechnol. 36, 1439-1446. https://doi.org/10.1007/s10295-009-0630-z
  3. Feng, B., W. Hu, B. Ma, Y. Wang, H. Huang, S. Wang, and X. Qian. 2007. Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata. Appl. Microbiol. Biotechnol. 76, 1329-1338. https://doi.org/10.1007/s00253-007-1117-3
  4. James, J. A., B. Jean-luc, and L. H. Byong. 1997. Purification of Glucoamylase from Lactobacillus amylovorus ATCC 33621. Current Microbiology 34, 186-191. https://doi.org/10.1007/s002849900166
  5. Kang, D. O., I. K. Hwang, W. K. Oh, H. S. Lee, S. C. Ahn, B. Y. Kim, T. I. Mheen, and J. S. Ahn. 1999. Molecular cloning and analysis of sporulation specific glucoamylase (SGA) gene of Saccharomyces diastaticus. The Journal of Microbiology 37, 35-40.
  6. Kleinman, M. J., A. E. Wilkinson, I. P. Wright, I. H. Evans, and E. A. Bevan. 1988. Purification and properties of an extracellular glucoamylase from a diastatic strain of Saccharomyces cerevisiae. Biochem. J. 249, 163-170.
  7. Kumar, P. and T. Satyanarayana. 2009. Microbial glucoamylase: characteristics and application. Critical Reviews in Biotechnology 29, 225-255. https://doi.org/10.1080/07388550903136076
  8. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  9. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
  10. Modena, D., M. Vanoni, S. Englard, and J. Marmur. 1986. Biochemical and immunological characterization of the STA2-encoded extracellular glucoamylase from Saccharomyces diastaticus. Archiv. Biochem. Biophys. 248, 138-150. https://doi.org/10.1016/0003-9861(86)90410-8
  11. Ono, S., S. Tanpa, I, Yamazaki, T. Yoshimura, T. Matsumoto, I. Yamaura, T, Kato, I. Yamashita, and C. Shimasaki. 1996. Comparison of thermal and guanidine hydrochloride denaturarion behaviors of glucoamylase from the STA1 gene of Saccharomyces cerevisiae var. diastaticus. Biosci. Biotechnol. Biochem. 60, 1543-1545. https://doi.org/10.1271/bbb.60.1543
  12. Pugh, T. A., J. C. Shah, P. T. Magee, and M. J. Clancy. 1989. Characterization and localization of the sporulation-specific glucoamylase of Saccharomyces cerevisiae. Biochim. Biophys. Acta. 994, 200-209. https://doi.org/10.1016/0167-4838(89)90294-X
  13. Sauer. J., B. W. Sigurskjold, U. Christensen, T. P. Frandsen, E. Miragorodskaya, M. Harrison, P. Roepstorff, and B. Svensson. 2000. Glucoamylase: stucture/function relationships, and protein engineering. Biochim. Biophys. Acta 1543, 275-293. https://doi.org/10.1016/S0167-4838(00)00232-6
  14. Tamaki, H. 1978. Genetic studies of ability to ferment starch in Saccharomyces:gene polymorphism. Mol. Gen. Genet. 164, 205-209. https://doi.org/10.1007/BF00267385
  15. Tarentino, A. L. and F. Maley. 1974. Purification and properties of an endo-beta-N-acetylglucosaminidase from Streptomyces griseus. J. Biol. Chem. 249, 811-817.
  16. Yamashita, I., K. Suzuki, and S. Fukui. 1985. Nucleotide sequence of the extracellular glucoamylase gene STA1 in the yeast Saccharomyces diastaticus. J. Bacteriol. 161, 567-573.
  17. Yamashita, I., K. Suzuki, and S. Fukui. 1986. Proteolytic processing of glucoamylase in yeast Saccharomyces diastaticus. Agri. Biol. Chem. 50, 475-482. https://doi.org/10.1271/bbb1961.50.475
  18. Yamashita, I., M. Nakamura, and S. Fukui. 1987. Gene fusion is a possible mechanism underlying the evolution of STA1. J. Bacteriol. 169, 2142-2149.
  19. Yamashita, I., T. Hatano, and S. Fukui. 1984. Subunit structure of glucoamylase of Saccharomyces diastaticus. Agri. Biol. Chem. 48, 1611-1616. https://doi.org/10.1271/bbb1961.48.1611
  20. Yamashita, I., T. Maemura, T. Hatano, and S. Fukui. 1985. Polymorphic extracellular glucoamylase genes and their evolutionary origin in the yeast Saccharomyces diastaticus. J. Bacteriol. 161, 574-582.

Cited by

  1. The Signal Sequence of Sporulation-Specific Glucoamylase Directs the Secretion of Bacterial Endo-1,4-β-D-Glucanase in Yeast vol.22, pp.2, 2012, https://doi.org/10.5352/JLS.2012.22.2.142