DOI QR코드

DOI QR Code

Characterization of Co-AC/TiO2 Composites and Their Photonic Decomposition for Organic Dyes

  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Son, Joo-Hee (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Park, Chong-Yun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Shin, Yong-Chan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Hyun-Woo (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • 투고 : 2010.06.10
  • 심사 : 2010.08.05
  • 발행 : 2010.08.27

초록

In this study, activated carbon (AC) as a carbon source was modified with different concentrations of cobalt chloride ($CoCl_2$) to prepare a Co-AC composite, and it was used for the preparation of Co-AC/$TiO_2$ composites with titanium oxysulfate (TOS) as the titanium precursor. The physicochemical properties of the prepared Co-AC/$TiO_2$ composites were characterized by $N_2$ adsorption at 77 K, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. The photocatalytic treatments of organic dyes were examined under an irradiation of visible light with different irradiation times. $N_2$ adsorption data showed that the composites had decreased surface area compared with the pristine AC, which was $389\;m^2/g$. From the XRD results, the Co-AC/$TiO_2$ composites contained a mixturephase structuresof anatase and rutile, but a cobalt oxide phase was not detected in the XRD pattern. The EDX results of the Co-AC/$TiO_2$ composites confirmed the presence of various elements, namely, C, O, Ti, and Co. Subsequently, the decomposition of methylene orange (MO, $C_{14}H_{14}N_3NaO_3S$) and rhodamine B (Rh.B, $C_{28}H_{31}ClN_2O_3$) in an aqueous solution, respectively, showed the combined effects of an adsorption effect by AC and the photo degradation effect by $TiO_2$. Especially, the Co particles in the Co-AC/$TiO_2$ composites could enhance the photo degradation behaviors of $TiO_2$ under visible light.

키워드

참고문헌

  1. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard and J. M. Herrmann, Appl. Catal. B, 39, 75 (2002). https://doi.org/10.1016/S0926-3373(02)00078-4
  2. S. Fukahori, H. Ichiura, T. Kitaoka and H. Tanaka, Appl. Catal. B, 46, 453 (2003). https://doi.org/10.1016/S0926-3373(03)00270-4
  3. G. Alhakimi, L. H. Studnicki and M. Al-Ghazali, J. Photochem. Photobiol. A, 154, 219 (2003). https://doi.org/10.1016/S1010-6030(02)00329-5
  4. F. Shiraishi, S. Yamaguchi and Y. Ohbuchi, Chem. Eng. Sci., 58, 929 (2003). https://doi.org/10.1016/S0009-2509(02)00630-9
  5. H. Chun, W. Yizhonga and T. Hongxiao, Chemosphere, 41, 1205 (2000). https://doi.org/10.1016/S0045-6535(99)00539-1
  6. Z. Ding, H. Y. Zhu, G. Q. Lu and P. F. Greenfield, J. Colloid Interface Sci., 209, 193 (1999). https://doi.org/10.1006/jcis.1998.5857
  7. M. A. Barakat, H. Schaeffer, G. Hayes and S. Ismat-Shah, Appl. Catal. B: Environ., 57, 23 (2005). https://doi.org/10.1016/j.apcatb.2004.10.001
  8. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 293, 269 (2001). https://doi.org/10.1126/science.1061051
  9. J. -C. Xu, Y. -L. Shi, J. -E. Huang, B. Wang and H. -L. Li, J. Mol. Catal. A: Chem., 219, 351 (2004). https://doi.org/10.1016/j.molcata.2004.05.018
  10. C. C. Pan and J. C. S. Wu, Mater. Chem. Phys., 100, 102 (2006). https://doi.org/10.1016/j.matchemphys.2005.12.013
  11. W. C. Oh and M. L. Chen, J. Ceram. Process. Res., 9, 100 (2008).
  12. J. Arana and J. M. Dona, Appl. Catal. B: Environ., 44, 161 (2003). https://doi.org/10.1016/S0926-3373(03)00107-3
  13. S. X. Liu, X. Y. Chen and X. Chen, J. Hazard. Mater., 143, 257 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.026
  14. W. C. Oh, M. L. Chen and C. S. Lim, J. Ceram. Process. Res., 8, 119 (2007).
  15. W. C. Oh, J. S. Bae, M. L. Chen and Y. S. Ko, Analytical Science & Technology, 19, 376 (2006).
  16. W. C. Oh, J. S. Bae and M. L. Chen, Bull. Kor. Chem. Soc., 27, 1423 (2006). https://doi.org/10.5012/bkcs.2006.27.9.1423
  17. L. P. Zhu, G. H. Liao, W. Y. Huang, L. L. Ma, Y. Yang, Y. Yu and S. Y. Fu, Mater. Sci. Eng. B, 163, 194 (2009). https://doi.org/10.1016/j.mseb.2009.05.021
  18. X. K. Wang, J. G. Wang, P. Q. Guo, W. L. Guo and C. Wang, J. Hazard. Mater., 169, 486 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.122
  19. M. Inagaki, Y. Hirose, T. Matsunage, T. Tsumura and M. Toyoda, Carbon, 41, 2619 (2003). https://doi.org/10.1016/S0008-6223(03)00340-3
  20. M. L. Chen, J. S. Bae and W. C. Oh, Analytical Science & Technology, 19, 460 (2006).
  21. Y. G. Go, H. J. Kwon, M. L. Chen, F. J. Zhang and W. C. Oh, Kor. J. Mater. Res., 19, 555 (2009). https://doi.org/10.3740/MRSK.2009.19.10.555
  22. Y. L. Dong, J. L. Won, S. Jae Sung, H. K. Jung and S. K. Yang, Comput. Mater. Sci., 30, 383 (2004). https://doi.org/10.1016/j.commatsci.2004.02.029