DOI QR코드

DOI QR Code

Progress of High-k Dielectrics Applicable to SONOS-Type Nonvolatile Semiconductor Memories

  • Tang, Zhenjie (Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, Nanjing University) ;
  • Liu, Zhiguo (Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, Nanjing University) ;
  • Zhu, Xinhua (School of Physics, National Laboratory of Solid State Microstructures, Nanjing University)
  • 투고 : 2010.05.13
  • 심사 : 2010.06.22
  • 발행 : 2010.08.25

초록

As a promising candidate to replace the conventional floating gate flash memories, polysilicon-oxide-nitride-oxidesilicon (SONOS)-type nonvolatile semiconductor memories have been investigated widely in the past several years. SONOS-type memories have some advantages over the conventional floating gate flash memories, such as lower operating voltage, excellent endurance and compatibility with standard complementary metal-oxide-semiconductor (CMOS) technology. However, their operating speed and date retention characteristics are still the bottlenecks to limit the applications of SONOS-type memories. Recently, various approaches have been used to make a trade-off between the operating speed and the date retention characteristics. Application of high-k dielectrics to SONOS-type memories is a predominant route. This article provides the state-of-the-art research progress of high-k dielectrics applicable to SONOS-type nonvolatile semiconductor memories. It begins with a short description of working mechanism of SONOS-type memories, and then deals with the materials' requirements of high-k dielectrics used for SONOS-type memories. In the following section, the microstructures of high-k dielectrics used as tunneling layers, charge trapping layers and blocking layers in SONOS-type memories, and their impacts on the memory behaviors are critically reviewed. The improvement of the memory characteristics by using multilayered structures, including multilayered tunneling layer or multilayered charge trapping layer are also discussed. Finally, this review is concluded with our perspectives towards the future researches on the high-k dielectrics applicable to SONOS-type nonvolatile semiconductor memories.

키워드

참고문헌

  1. Front-end processing in International Technology Roadmap for Semiconductors (ITRS) 2009, (2009, Dec. 16) [Internet] Available from: http://www.itrs.net/Links/2009ITRS/Home2009.htm.
  2. M. H. White, D. A. Adams, and J. Bu, IEEE Circuits Devices Mag. 16, 22 (2000) [DOI: 10.1109/101.857747].
  3. Y. M. Niquet, G. Allan, C. Delerue, and M. Lannoo, Appl. Phys. Lett. 77, 1182 (2000) [DOI: 10.1063/1.1289659].
  4. J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, IEEE Electron Device Lett. 18, 278 (1997) [DOI:10.1109/55.585357].
  5. R. Muralidhar, R. F. Steimle, M. Sadd, R. Rao, C. T. Swift, E. J. Prinz, J. Yater, L. Grieve, K. Harber, B. Hradsky, S. Straub, B. Acred, W. Paulson, W. Chen, L. Parker, S. G. H. Anderson, M. Rossow, T. Merchant, M. Paransky, T. Huynh, D. Hadad, K. M. Chang, and B. E. White, Jr, IEEE International Electron Devices Meeting. IEDM Technical Digest (Washington, DC 2003 Dec. 8-10) p. 26.2.1 [DOI: 10.1109/IEDM.2003.1269353].
  6. T. Baron, B. Pellissier, L. Perniola, F. Mazen, J. M. Hartmann, and G. Polland, Appl. Phys. Lett. 83, 1444 (2003) [DOI: 10.1063/1.1604471].
  7. Q. Wan, C. L. Lin, W. L. Liu, and T. H. Wang, Appl. Phys. Lett. 82, 4708 (2003) [DOI: 10.1063/1.1588373].
  8. C. Lee, A. Gorur-Seetharam, and E. C. Kan, IEEE International Electron Devices Meeting. IEDM Technical Digest (Washington, DC 2003 Dec. 8-10) p. 22.6.1 [DOI: 10.1109/IEDM.2003.1269344].
  9. M. Takata, S. Kondoh, T. Sakaguchi, H. Choi, J. C. Shim, H. Kurino, and M. Koyanagi, IEEE International Electron Devices Meeting. IEDM Technical Digest (Washington, DC 2003 Dec. 8-10) p. 22.5.1 [DOI: 10.1109/IEDM.2003.1269343].
  10. P. Xuan, M. She, B. Harteneck, A. Liddle, J. Bokor, and T. J. King, IEEE International Electron Devices Meeting. IEDM Technical Digest (Washington, DC 2003 Dec. 8-10) p. 26.4.1 [DOI: 10.1109/IEDM.2003.1269355].
  11. T. S. Chen, K. H. Wu, H. Chung, and C. H. Kao, IEEE Electron Device Lett. 25, 205 (2004) [DOI: 10.1109/LED.2004.825163].
  12. T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, International Symposium on VLSI Technology Systems and Applications (VLSI-TSA) (Hsinchu 2003 Oct. 6-8, IEEE) p. 27.
  13. S. S. Kim, W. J. Cho, C. G. Ahn, K. Im, J. H. Yang, I. B. Baek, S. Lee, and K. S. Lim, Appl. Phys. Lett. 88, 223502 (2006) [DOI: 10.1063/1.2208268].
  14. J. H. Chen, W. J. Yoo, D. S. H. Chan, and L. J. Tang, Appl. Phys. Lett. 86, 073114 (2005) [DOI: 10.1063/1.1868077].
  15. M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, and H. A. Atwater, Appl. Phys. Lett. 79, 433 (2001) [DOI:10.1063/1.1385190].
  16. C. C. Yeh, T. P. Ma, N. Ramaswamy, N. Rocklein, D. Gealy, T. Graettinger, and K. Min, Appl. Phys. Lett. 91, 113521 (2007) [DOI: 10.1063/1.2786021].
  17. S. Choi, S. J. Baik, and J. T. Moon, IEEE International Devices Meeting. IEDM Technical Digest (San Francisco, CA 2008 Dec. 15-17) p. 925.
  18. M. Lisiansky, A. Heiman, M. Kovler, A. Fenigstein, Y. Roizin, I. Levin, A. Gladkikh, M. Oksman, R. Edrei, A. Hoffman, Y. Shnieder, and T. Claasen, Appl. Phys. Lett. 89, 153506 (2006) [DOI: 10.1063/1.2360197].
  19. P. H. Tsai , K. S. Chang-Liao , T. Y. Wu, T. K. Wang, P. J. Tzeng , C. H. Lin , L. S. Lee , and M. J. Tsai, Solid-State Electron. 52, 1573 (2008) [DOI: 10.1016/j.sse.2008.06.030].
  20. H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’ Connell, R. E. Oleksiak, and H. Lawrence, IEEE International Devices Meeting. IEDM Technical Digest (Washington, DC 1967 Dec. 18-20 IEEE).
  21. R. Ohba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, IEEE Trans. Electron Devices, 49, 1392 (2002) [DOI: 10.1109/TED.2002.801296].
  22. J. H. Kim and J. B. Choi, IEEE Trans. Electron Devices 51, 2048 (2004) [DOI: 10.1109/TED.2004.838446].
  23. Y. M. Niquet, G. Allan, C. Delerue, and M. Lannoo, Appl. Phys. Lett. 77, 1182 (2000) [DOI: doi:10.1063/1.1289659].
  24. H. C. Wann and C. Hu, IEEE Electron Device Lett. 16, 491 (1995) [DOI: 10.1109/55.468277].
  25. P.A. Packan, Science 1999, 285, 2079 (1999) [DOI: 10.1126/science.285.5436.2079].
  26. G. D. Wilk, R. M. Wallace, J. M. Anthony, J. Appl. Phys. 89, 5243 (2001) [DOI: 10.1063/1.1361065].
  27. G. D. Wilk and R. M. Wallace, Appl. Phys. Lett. 74, 2854 (1999) [DOI: 10.1063/1.124036].
  28. G. D. Wilk and R. M. Wallace, Appl. Phys. Lett. 76, 112 (2000) [DOI: 10.1063/1.125673].
  29. B. H. Lee, L. Kang, R. Nieh, W. J. Qi, and J. C. Lee, Appl. Phys. Lett. 76, 1926 (2000) [DOI: 10.1063/1.126214].
  30. M. Copel, M. A. Gribelyuk, and E. Gusev, Appl. Phys. Lett. 76, 436 (2000) [DOI: 10.1063/1.125779]
  31. T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hedge, I. J. R. Baumvol, and G. N. Parsons, Appl. Phys. Lett. 75, 4001 (1999) [DOI: 10.1063/1.125519].
  32. M. Wu, Y. Yang, A. Chin, W. J. Chen, and C. M. Kwei, IEEE Electron. Device Lett. 21, 341 (2000). https://doi.org/10.1109/55.847374
  33. H. J. Osten, J. P. Liu, and H. J. Mussig, Appl. Phys. Lett. 80, 297 (2000) [DOI: 10.1063/1.1433909].
  34. J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Cabal, J. P. Man-naerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, Appl. Phys. Lett. 77, 130 (2000) [DOI: 10.1063/1.126899].
  35. J. A. Gupta, D. Landheer, J. P. McCaffrey, and G. F. I. Sproule, Appl. Phys. Lett. 78, 1718 (2001) [DOI: 10.1063/1.1356725].
  36. M. D. Kannan, S. K. Narayandass, C. Balasubramanian, and D. Mangalar-aj, Phys. Stat. Solidi A 128, 427 (1991) [DOI: 10.1002/pssa.2211280219].
  37. L. G. Gao, B. Xu, H. X. Guo, Y. D. Xia, J. Yin, and Z. G. Liu, Appl. Phys. Lett. 94, 252901 (2009) [DOI: 10.1063/1.3159473].
  38. L. G. Gao, K. B. Yin, L. Chen, H. X. Guo, Y. D. Xia, J. Yin, and Z. G. Liu, Appl. Surf. Sci. 256, 90 (2009) [DOI:10.1016/j.apsusc.2009.07.075].
  39. L. G. Gao, Y. D. Xia, H. X. Guo, B. Xu, Z. G. Liu, and J. Yin, J. Appl. Phys. 106, 046106 (2009) [DOI: 10.1063/1.3204459].
  40. M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, H. J. Choi, S. W. Nan, and D. H. Ko, Appl. Phys. Lett. 81, 1071 (2002) [DOI: 10.1063/1.1499223].
  41. J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004) [DOI: 10.1051/epjap:2004206].
  42. B. Cheng, M. Cao, P. Rao, A. Inani, P. V. Voorde,W. M. Greene, J. M. C. Stork, Z. Yu, P. M. Zeitzoff, and J. C. S. Woo, IEEE Trans. Electron Devices 46, 1537 (1999) [DOI: 10.1109/16.772508].
  43. G. C. F. Yeap, S. Krishnan, and M. R. Lin, Electron. Lett. 34, 1150 (1998). https://doi.org/10.1049/el:19980800
  44. H. W. Zhu, X. Y. Liu, C. Shen, J. F. Kang, and R. O. Han, Chinese J. Semicond. 22, 1107 (2001).
  45. J. Robertson and C. W. Chen, Appl. Phys. Lett. 74, 1168 (1999) [DOI: 10.1063/1.123476].
  46. M. Houssa, V. V. Afanas’ev, A. Stesmans, and M. M. Heyns, Appl. Phys. Lett. 77, 1885 (2000) [DOI: 10.1063/1.1310635].
  47. J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000) [DOI: 10.1116/1.591472].
  48. T. M. Pan and T. Y. Yu, Appl. Phys. Lett. 92, 112906 (2008) [DOI: 10.1063/1.2898215].
  49. G. Zhang, X. P. Wang, W. J. Yoo, and M.F. Li, IEEE Trans. Electron Devices, 54, 257 (2007) [DOI: 10.1109/TED.2007.908888].
  50. J. R. Hwang, T. L. Lee, H. C. Ma, T. C. Lee, T. H. Chung, C. Y. Chang, S. D. Liu, B. C. Perng, J. W. Hsu, M. Y. Lee, C. Y. Ting, C. C. Huang, J. H. Wang, J. H. Shieh, and F. L. Yang, IEEE International Electron Devices Meeting. IEDM Technical Digest (Washington, DC 2005 Dec. 5-7, IEEE Group on Electron Devices) p. 154 [DOI: 10.1109/IEDM.2005.1609293]
  51. S. Choi, M. Cho, H. Hwang, and J. W. Kim, J. Appl. Phys. 94, 5408 (2003) [DOI: 10.1063/1.1609650].
  52. M. Specht, H. Reisinger, F. Hofmann, T. Schulz, E. Landgraf, R. J. Luyken, W. Rosner, M. Grieb, and L. Risch, Solid-State Electron. 49, 716 (2005) [DOI: 10.1016/j.sse.2004.09.003].
  53. Y. H. Lin, T. Y. Yang, C. H. Chien, and T. F. Lei, Extended Abstracts of the 2006 International Conference on Solid State Devices and Materials (Yokohama 2006) p. 558.
  54. M. S. Joo, S. R. Lee, H. Yang, K. Hong, S. A. Jang, J. Koo, J. Kim, S. Shin, M. Kim, S. Pyi, N. Kwak, and J. W. Kim, Extended Abstracts of the 2006 International Conference on Solid State Devices and Materials (Yokohama 2006) p. 982.
  55. M. Balog, M. Schieber, M. Michiman, and S. Patai, Thin Solid Films 41, 247 (1977) [DOI: 10.1016/0040-6090(77)90312-1].
  56. J. Zhu and Z. G. Liu, Appl. Phys. A, 80, 1769 (2005) [DOI: 10.1007/s00339-003-2479-8].
  57. J. Zhu, Y. R. Li, and Z. G. Liu, J. Phys. D: Appl. Phys. 37, 2896 (2004) [DOI: 10.1088/0022-3727/37/20/017].
  58. H. W. You and W. J. Cho, Appl. Phys. Lett. 96, 093506 (2010) [DOI: 10.1063/1.3337103].
  59. T. M. Pan and W. W. Yeh, IEEE Trans. Electron Devices, 55, 2354 (2008) [DOI:10.1109/TED.2008.927401].
  60. T. M. Pan and W. W. Yeh, Appl. Phys. Lett. 92, 173506 (2008) [DOI: 10.1063/1.2919086].
  61. L. Shi, Y. D. Xia, K. B. Yin, and Z. G. Liu, Appl. Phys. Lett. 92, 132912 (2008) [DOI: 10.1063/1.2906364].
  62. C. H. Lee, S. H. Hur, Y. C. Shin, J. H. Choi, D. G. Park, and K. Kim, Appl. Phys. Lett. 86, 152908 (2005) [DOI: 10.1063/1.1897431].
  63. S. Maikap, H. Y. Lee, T. Y. Wang, P. J. Tzeng, C. C. Wang, L. S. Lee, K. C. Liu, J. R. Yang, and M. J. Tsai, Semicond. Sci. Technol. 22, 884 (2007) [DOI: 10.1088/0268-1242/22/8/010].
  64. Y. N. Tan, W. K. Chim, B. J. Cho, and W. K. Choi, IEEE Trans. Electron Devices 51, 1143 (2004) [DOI: 10.1109/TED.2004.829861].
  65. P. H. Tsai, K. S. Chang-Liao, T. C. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin, L. S. Lee, and M. J. Tsai, IEEE Electron Devices Lett. 30, 775 (2009) [DOI: 10.1109/LED.2009.2022287].
  66. P. H. Tsai, K. S. Chang-Liao, C. Y. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin, L. S. Lee, and M. J. Tsai, IEEE Electron Devices Lett. 29, 265 (2008) [DOI: 10.1109/LED.2007.915380].
  67. G. Molas, H. Grampeix, J. Buckley, M. Bocquet, X. Garros, F. Martin, J. P. Colonna, P. Brianceau, V. Vidal, M. Gely, B. D. Salvo, S. Deleonibus, C. Bongiorno, and S. Lombardo, Proceedings of the 36th European Solid-State Device Research Conference (Montreux 2006 Sep.) p. 242 [DOI: 10.1109/ESSDER.2006.307683].
  68. W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, IEEE Electron Devices Lett. 23, 649 (2002) [DOI: 10.1109/LED.2002.805000].
  69. Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, and B. J. Cho, IEEE Trans. Electron Devices, 53, 654 (2006) [DOI: 10.1109/TED.2006.870273].
  70. J. Pu, D. S. H. Chan, S. J. Kim, and B. J. Cho, IEEE Trans. Electron Devices, 56, 2739 (2009) [DOI: 10.1109/TED.2009.2030834].
  71. Y. Park, J. K. Park, M. H. Song, S. K. Lim, J. S. Oh, M. S. Joo, K. Hong, and B. J. Cho, Appl. Phys. Lett. 96, 052907 (2010) [DOI: 10.1063/1.3309693].
  72. Y. H. Wu, L. L. Chen, Y. S. Lin, M. Y. Li, and H. C. Wu, IEEE Electron Devices Lett. 30, 1290 (2009) [DOI: 10.1109/LED.2009.2034115].
  73. X. G. Wang, J. Liu, W. Bai, and D. L. Kwong, IEEE Trans. Electron Devices, 51, 597 (2004) [DOI: 10.1109/TED.2004.824684].
  74. X. G. Wang and D. L. Kwong, IEEE Trans. Electron Devices, 53, 78 (2006) [DOI: 10.1109/TED.2005.860637].
  75. K. K. Likharev, Appl. Phys. Lett. 73, 2137 (1998) [DOI: 10.1063/1.122402].
  76. B. Govoreanu, P. Blomme, M. Rosmeulen, J. Van Houdt, and K. De Meyer, IEEE Electron Device Lett. 24, 99 (2003) [DOI: 10.1109/LED.2002.807694].
  77. J. Buckley, B. De Salvo, G. Ghibaudo, M. Gely, J. F. Damlencourt, F. Martin, G. Nicotra, and S. Deleonibus, Solid-State Electron. 49, 1833 (2005) [DOI: 10.1016/j.sse.2005.10.005].
  78. F. Irrera and G. Puzzilli, Microelectron. Reliab. 45, 907 (2005) [DOI: 10.1016/j.microrel.2004.11.026].
  79. F. Irrera, IEEE Trans. Electron Devices 53, 2418 (2006) [DOI: 10.1109/TED.2006.879675].
  80. K. S. Seol, S. J. Choi, J. Y. Choi, E. J. Jang, B. K. Kim, S. J. Park, D. G. Cha, I. Y. Song, J. B. Park, Y. Park, and S. H. Choi, Appl. Phys. Lett. 89, 083109 (2006) [DOI: 10.1063/1.2335677].
  81. Y. R. Liu, S. Dey, S. Tang, D. Q. Kelly, J. Sarkar, and S. K. Banerjee, IEEE Trans. Electron Devices 53, 2598 (2006) [DOI: 10.1109/TED.2006.882395].
  82. H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. C. Chen, J. Ku, K. Y. Hsieh, R. Liu, and C. Y. Lu, IEEE International Electron Devices Meeting. IEDM Technical Digest (Washington, DC 2005 Dec. 5-7) p. 547 [DOI: 10.1109/IEDM.2005.1609342].
  83. M. H. Jung, K. S. Kim, G. H. Park, and W. J. Cho, Appl. Phys. Lett. 94, 053508 (2009) [DOI: 10.1063/1.3078279].
  84. M. Specht, M. Stadele, and F. Hofmann, Proceedings of the 32nd European Solid-State Device Research Conference (2002 Sep. 24-26) p. 599.
  85. W. Chen, W. J. Liu, M. Zhang, S. J. Ding, D. W. Zhang, and M. F. Li, Appl. Phys. Lett. 91, 022908 (2007) [DOI: 10.1063/1.2756849].
  86. S. J. Ding, M. Zhang, W. Chen, D. W. Zhang, and L. K. Wang, J. Electron. Mater. 36, 253 (2007) [DOI: 10.1007/s11664-006-0003-6].
  87. K. Kukli, J. Ihanus, M. Ritala, and M. Leskela, Appl. Phys. Lett. 68, 3737 (1996) [DOI: 10.1063/1.115990].
  88. G. H. Park and W. J. Cho, Appl. Phys. Lett. 96, 043503 (2010) [DOI: 10.1063/1.3293291].
  89. S. Maikap, T. Y. Wang, P. J. Tzeng, C. H. Lin, T. C. Tien, L. S. Lee, J. R. Yang, and M. J. Tsai, Appl. Phys. Lett. 90, 262901 (2007) [DOI: 10.1063/1.2751579].

피인용 문헌

  1. Dependence of Electrons Loss Behavior on the Nitride Thickness and Temperature for Charge Trap Flash Memory Applications vol.15, pp.5, 2014, https://doi.org/10.4313/TEEM.2014.15.5.245
  2. A Study of the Memory Characteristics of Al2O3/Y2O3/SiO2Multi-Stacked Films with Different Tunnel Oxide Thicknesses vol.49, pp.6, 2012, https://doi.org/10.4191/kcers.2012.49.6.631
  3. Design and Fabrication of Ta$_{2}$O $_{5}$ Stacks for Discrete Multibit Memory Application vol.12, pp.6, 2013, https://doi.org/10.1109/TNANO.2013.2281817
  4. The Dry Etching Characteristics of HfAlO3 Thin Films in CF4∕Cl2∕Ar Inductively Coupled Plasma vol.159, pp.1, 2012, https://doi.org/10.1149/2.033201jes
  5. Impact of metal nano layer thickness on tunneling oxide and memory performance of core-shell iridium-oxide nanocrystals vol.110, pp.7, 2011, https://doi.org/10.1063/1.3642961
  6. Carrier Transport Mechanisms of the Programming and Retention Characteristics for TaN–Al2O3–Si3N4–SiO2–Si Flash Memory Devices vol.51, pp.6S, 2012, https://doi.org/10.7567/JJAP.51.06FE21