DOI QR코드

DOI QR Code

Prevalence of Plasmid-Mediated Quinolone Resistance Genes in Escherichia coli Isolated from Diseased Animals in Korea

환축에서 분리된 Escherichia coli의 plasmid-mediated quinolone resistance genes 분포도 조사

  • Received : 2010.02.27
  • Accepted : 2010.04.05
  • Published : 2010.06.30

Abstract

Plasmid-mediated quinolone resistance (PMQR) determinants have been contributed to quinolone resistance of gram-negative bacteria worldwide. However, little data on the prevalence of these determinants in bacteria from animals are available in Korea. In this study, the prevalence of PMQR genes was investigated with E. coli originating from diseased animals. Among 55 E. coli tested, 11 showed PMQR genes by PCR. The most prevalent genotype was qepA (14.5%), followed by aac(6')-Ib-cr (7.3%) and qnrS (1.8%). Interestingly, two isolates with PMQR genes did not show quinolone resistance in this study. The isolates exhibited higher fluoroquinolone resistance in aac(6')-Ib-cr in combination with qnrS or qepA compared with aac(6')-Ib-cr only. In a conjugal transfer test, PMQR genes were transferred from donor to recipient.

본 연구는 동물유래 E. coli에서 plasmid-mediated quinolone resistance (PMQR) 유전자의 분포도를 조사하였다. 55주의 E. coli를 대상으로 PCR을 수행한 결과, PMQR 양성균은 11주이었으며 그 중 2주는 두 개의 PMQR 유전자를 동시에 가지고 있었다. PMQR 유전자의 염기서열 분석 결과, qnrS, aac(6')-Ib-cr, qepA로 확인되었고 qnrS (1.8%)와 aac(6')-Ib-cr (7.3%) 보다는 qepA (14.5%)가 높은 분포도를 나타내었으며, qnrA와 qnrB는 검출되지 않았다. 11주의 PMQR 양성균의 MIC를 측정한 결과, 대부분의 PMQR 양성균이 검사한 항생제에 내성을 보였지만 일부에서 감수성 균주도 확인되었다. 또한, aac(6')-Ib-cr 유전자는 단독으로 존재할 때 보다 qnrS 또는 qepA와 함께 존재할 때 내성이 더욱 증가함을 알 수 있었다. 내성유전자 전달능 실험에서 11주 모두 PMQR 유전자를 전달하였으며, PMQR 유전자를 전달받은 수용체에서 공여체와 동일한 내성 phenotype 및 PMQR 유전자를 확인 할 수 있었다.

Keywords

References

  1. Ball, P. 2000. Quinolone generations: natural history or natural selection. J. Antimicrob. Chemother. 46, 17-24. https://doi.org/10.1093/oxfordjournals.jac.a020889
  2. Bradley, D. E., D. E. Taylor, and D. R. Cohen. 1980. Specification of surface mating systems among conjugative drug resistance plasmids in Escherichia coli K-12. J. Bacteriol. 143, 1466-1470.
  3. Cavaco, L. M. and F. M. Aarestrup. 2009. Evaluation of quinolone for detection of acquired quinolone resistance including the new transmissible resistance mechanisms (qnrA, qnrB, qnrS and aac(6')-Ib-cr) in Escherichia coli and Salmonella enterica and determination of wild type distributions. J. Clin. Microbiol. 10, 456-463.
  4. Clinical and Laboratory Standards Institute. 2006. Performance standard for antimicrobial susceptibility testing; sixteenth informational supplement, M100-S16.
  5. Hooper, D. C. 2001. Emerging mechanisms of fluoroquinolone resistance. Emerging Infect. Dis. 7, 337-341. https://doi.org/10.3201/eid0702.010239
  6. Hopkins, K. L., R. H. Davies, and E. J. Threlfall. 2005. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int. J. Antimicrob. Agents. 25, 358-373. https://doi.org/10.1016/j.ijantimicag.2005.02.006
  7. Kim, E. S., S. J. Park, S. O. Lee, S. H. Choi, J. H. Woo, J. Y. Jeong, and Y. S. Kim. 2007. Prevalence of plasmid-mediated quinolone resistance determinants in cefotaxime-resistance Enterobacter cloacae isolates in Korea. Korean J. Infect. Dis. 39, 289-296.
  8. Kim, H. B., C. H. Park, C. J. Kim, E. C. Kim, G. A. Jacoby, and D. C. Hooper. 2009. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob. Agents Chemother. 53, 639-645. https://doi.org/10.1128/AAC.01051-08
  9. Lei, Y., H. X. Jiang, X. P. Liao, J. H. Liu, S. J. Li, X. Y. Chen, C. X. Chen, D. H. Lü, and Y. H. Liu. 2008. Prevalence of plasmid-mediated quinolone resistance qnr genes in poultry and swine clinical isolates of Escherichia coli. Vet. Microbiol. 132, 414-420. https://doi.org/10.1016/j.vetmic.2008.05.009
  10. Ma, J., Z. Zeng, Z. Chen, X. Xu, X. Wang, Y. Deng, D. Lu, L. Huang, Y. Zhang, J. Liu, and M. Wang. 2009. High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6')-Ib-cr, and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals. Antimicrob. Agent Chemother. 53, 519-524. https://doi.org/10.1128/AAC.00886-08
  11. Martinez-Martinez, L., A. Pascual, and G. A. Jacoby. 1998. Quinolone resistance from a transferable plasmid. Lancet. 351, 797-799. https://doi.org/10.1016/S0140-6736(97)07322-4
  12. Park, C. H., A. Robicsek, G. A. Jacoby, D. Sahm, and D. C. Hooper. 2006. Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin modifying enzyme. Antimicrob. Agents Chemother. 50, 3953-3955. https://doi.org/10.1128/AAC.00915-06
  13. Paton, J. H. and D. S. Reeves. 1988. Fluoroquinolone antibiotics. Microbiology, pharmacokinetics and clinical use. Drugs. 36, 193-228. https://doi.org/10.2165/00003495-198836020-00004
  14. Robicsek, A., J. Strahilevitz, G. A. Jacoby, M. Macielag, D. Abbanat, C. H. Park, K. Bush, and D. C. Hooper. 2005. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 12, 83-88. https://doi.org/10.1038/nm1347
  15. Robicsek, A, G. A. Jacoby, and D. C. Hooper. 2006. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 6, 629-640. https://doi.org/10.1016/S1473-3099(06)70599-0
  16. Webber, M. and L. J. V. Piddock. 2001. Quinolone resistance in Escherichia coli. Vet. Res. 32, 275-284. https://doi.org/10.1051/vetres:2001124
  17. Yamane, K., J. Wachino, S. Suzuki, and Y. Arakawa. 2008. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob. Agents Chemother. 52, 1564-1566. https://doi.org/10.1128/AAC.01137-07