DOI QR코드

DOI QR Code

Purification and Biochemical Characteristics of Fibrinolytic Enzyme from Streptomyces corcohrussi JK-20

Streptomyces corcohrussi JK-20 유래 혈전용해효소의 순수분리 및 이의 생화학적 특성 규명

  • 김유정 (동아대학교 생물공학과) ;
  • 박정욱 (동아대학교 생물공학과) ;
  • 서민정 (동아대학교 의학생물과학과) ;
  • 김민정 (Medi-Farm 산업화 연구센터) ;
  • 이혜현 (Medi-Farm 산업화 연구센터) ;
  • 진세훈 (동아대학교 생물공학과) ;
  • 강병원 (동아대학교 생물공학과) ;
  • 최영현 (동의대학교 한의과대학 생화학교실) ;
  • 정영기 (동아대학교 생물공학과)
  • Received : 2010.03.19
  • Accepted : 2010.06.14
  • Published : 2010.06.30

Abstract

A fibrinolytic enzyme of Streptomyces corcohrussi from soil sediment was purified by chromatography using DEAE-Sephadex A-50 and Sephadex G-50. The analysis of SDS-polyacrylamide gel suggested that the purified enzyme is a homogeneous protein and the molecular mass is approximately 34 kDa. The purified enzyme showed activity of 0.8 U/ml in a plasminogen-rich fibrin plate, while its activity in a plasminogen-free fibrin plate was only 0.36 U/ml. These results suggested that the purified enzyme acts as a plasminogen activator. The fibrinolytic activity of the enzyme under the supplementation of protease inhibitors, $\varepsilon$-ACA, t-AMCHA and mercuric chloride in the enzyme reaction was less than 24%, indicating that it could be modulated by the plasmin and/or fibrinogen inhibitors involved in the fibrinogen-to-fibrin converting process. As time passed, $Zn^{2+}$, a heavy metal ion, inhibited the activity to 34.1%. The optimum temperature of the purified enzyme was approximately $50^{\circ}C$ and over 92% of the enzyme activity was maintained between pH 5.0 and 8.0. Therefore, our results provide a potential fibrinolytic enzyme as a noble thrombolytic agent from S. corcohrussi.

토양에서 생육하는 Streptomyces corcohrussi의 혈전용해효소가 DEAE-Sephadex A-50 그리고 Sephadex G-50 젤 여과를 이용한 크로마토그라피 방법에 의해 순수분리 되었다. SDS-PAGE 분석결과, 분리된 효소는 단일 단백질이고, 그 분자량은 약 34 kDa 이라는 것을 알 수 있었다. 순수분리된 효소의 혈전용해활성은 plasminogen-rich fibrin plate에서 0.8 U/ml 이었으나, plasminogen-free fibrin plate 에서의 그 효소활성은 0.36 U/ml 이하이었다. 이러한 결과로, 순수 분리된 효소가 plasminogen activator 로 작용한다는 것을 알 수 있었다. 단백질 저해제인 $\varepsilon$-ACA, t-AMCHA 와 mercuric chloride의 존재시에 그 혈전용해활성은 24% 이하이었는데, 이러한 결과는 이들 plasmin 저해제 그리고(혹은) fibrinogen을 fibrin으로 전환시키는 과정과 관련된 fibrinogen 저해제에 의해 이 효소가 조절될 수 있음을 나타낼 수 있다. 한편으로, 중금속 이온인 $Zn^{2+}$은 그 활성을 58% 감소시켰다. 순수 분리된 효소의 최적 온도는 약 $50^{\circ}C$ 이었고, 그 효소활성의 92% 이상은 pH 5.0과 8.0 사이에서 유지되었다. 그러므로, 이러한 결과들은 하나의 강력한 혈전용해효소를 제공해서, S. corcohrussi 유래 새로운 혈전용해제의 개발에 기여하도록 한다.

Keywords

References

  1. Arai, K., J. Mimuro, S. Madoiwa, M. Matsuda, T. Sako, and Y. Sakata. 1995. Effect of staphylokinase concentration of plasminogen activation. Biochim. Biophys. Acta 1245, 69-75. https://doi.org/10.1016/0304-4165(95)00064-I
  2. Astrup, T. and S. Müllertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40, 346-351. https://doi.org/10.1016/0003-9861(52)90121-5
  3. Blann, A. D., M. J. Landray, and G. Y. Lip. 2002. ABC of antithrombotic therapy: an overview of antithrombotic therapy. BMJ 25, 762-765.
  4. Bode, C., M. S. Runge, and R. W. Smalling. 1996. The future of thrombolysis in the treatment of acute myocardial infarction. Eur. Heart J. 17, 55-60. https://doi.org/10.1093/eurheartj/17.suppl_E.55
  5. Bono, F., P. Savi, A. Tuong, M. Maftouh, J. M. Pereillo, J. Capdevielle, J. C. Guillemot, J. P. Maffrand, and J. M. Herbert. 1996. Purification and characterization of a novel protease from culture filtrates of a Streptomyces sp. FEMS Microbiol. Lett. 141, 213-220. https://doi.org/10.1111/j.1574-6968.1996.tb08387.x
  6. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Chitte, R. R. and S. Dey. 2000. Potent fibrinolytic enzyme from a thermophilic Streptomyces megasporus strain SD5. Lett. Appl. Microbiol. 31, 405-410. https://doi.org/10.1046/j.1365-2672.2000.00831.x
  8. Jang, J. S., D. O. Kang, M. J. Chun, and S. M. Byun. 1992. Molecular cloning of a subtilisin J gene from Bacillus stearothermophilus and its expression in Bacillus subtilis. Biochem. Biophys. Res. Commun. 184, 277-282. https://doi.org/10.1016/0006-291X(92)91189-W
  9. Jeong, Y. K., J. H. Kim, S. W. Gal, J. E. Kim, S. S. Park, K. T. Chung, Y. H. Kim, B. W. Kim, and W. H. Joo. 2004. Molecular cloning and characterization of the gene encoding a fibrinolytic enzyme from Bacillus subtilis strain A1. World J. Microbiol. Biotechnol. 20, 711-717. https://doi.org/10.1007/s11274-003-4514-5
  10. Jeong, Y. K., J. U. Park, H. Baek, S. H. Park, and I. S. Kong. 2001. Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J. Microbiol. Biotechnol. 17, 89-92. https://doi.org/10.1023/A:1016685411809
  11. Jeong Y. K., W. S. Yang, K. H. Kim, K. T. Chung, W. H. Joo, J. H. Kim, and J. U. Park. 2004. Purification of a fibrinolytic enzyme (myulchikinase) from pickled anchovy and its cytotoxicity to the tumor cell lines. Biotechnol. Lett. 26, 393-397. https://doi.org/10.1023/B:BILE.0000018257.18617.6d
  12. Kim, W., K. Choi, Y. Kim, H. Park, J. Choi, Y. Lee, H. Oh, I. Kwon, and S. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 62, 2482-2488.
  13. Kim, J. H. and Y. S. Kim. 1999. A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom, Armillariella mellea. Biosci. Biotechnol. Biochem. 63, 2130-2136. https://doi.org/10.1271/bbb.63.2130
  14. Kim, H. K., G. T. Kim, D. K. Kim, W. A. Chio, S. H. Park, Y. K. Jeong, and I. S. Kong. 1997. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J. Ferment. Bioeng. 84, 307-312. https://doi.org/10.1016/S0922-338X(97)89249-5
  15. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  16. Lee, J., S. Park, W. A. Choi, K. H. Lee, Y. K. Jeong, I. S. Kong, and S. Park. 1999. Production of a fibrinolytic enzyme in bioreactor culture by Bacillus subtilis BK-17. J. Microbiol. Biotechnol. 9, 443-449.
  17. Medved, L. V., D. A. Solovjov, and K. C. Ingham. 1966. Domain structure, stability and interactions in streptokinase. Eur. J. Biochem. 239, 333-339. https://doi.org/10.1111/j.1432-1033.1996.0333u.x
  18. Mihara, H., H. Sumi, T. Yoneta, H. Mizumoto, R. Ikeda, M. Seiki, and M. Maruyama. 1991. A novel fibrinolytic enzyme extracted from the earthworm Lumbricus rubellus. Jpn. J. Physiol. 41, 461-472. https://doi.org/10.2170/jjphysiol.41.461
  19. Nakamura, T., Y. Yamagata, and E. Ichishima. 1992. Nucleotide sequence of the subtilisin NAT gene, aprN of Bacillus subtilis (natto). Biosci. Biotechnol. Biochem. 56, 1869-1871. https://doi.org/10.1271/bbb.56.1869
  20. Park, S. S., S. L. Wong, L. F. Wang, and R. H. Doi. 1989. Bacillus subtilis subtilisin gene (aprE) is expressed from a sigma A (sigma 43) promoter in vitro and in vivo. J. Bacteriol. 171, 2657-2665.
  21. Peng, Y., Q. Huang, R. H. Zhang, and Y. Z. Zhang. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp. Biochem. Physiol. B 134, 45-52. https://doi.org/10.1016/S1096-4959(02)00183-5
  22. Smith, E. L., R. J. Delange, W. H. Evans, M. Landon, and F. S. Markland. 1968. Subtilisin Carlsberg. V. The complete sequence; comparison with subtilisin BPN'; evolutionary relationships. J. Biol. Chem. 243, 2184-2191.
  23. Sumi, H., H. Hamada, H. Tsushima, H. Mihara, and H. Muraki. 1987. A novel fibrinolytic enzyme (Nattokinase) in the vegetable cheese natto: a typical and popular soybean food in the Japanese diet. Experimentia 43, 1110-1111. https://doi.org/10.1007/BF01956052
  24. Sumi, H., N. Nakajima, and C. Yatagai. 1995. A unique strong fibrinolytic enzyme (Katsuwokinase) in skipjack “Shiokara”, a Japanese traditional fermented food. Comp. Biochem. Physiol. 112, 543-547. https://doi.org/10.1016/0305-0491(95)00100-X
  25. Turpie, A. G., B. S. Chin, and G. Y. Lip. 2002. Venous thromboembolism: pathophysiology, clinical features, and prevention. BMJ 325, 887-890. https://doi.org/10.1136/bmj.325.7369.887
  26. Vasantha, N., L. D. Thompson, C. Rhodes, C. Banner, J. Nagle, and D. Filpula. 1984. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J. Bacteriol. 159, 811-819.
  27. Wong, A. H. and Y. Mine. 2004. A novel fibrinolytic enzyme in fermented shrimp paste, a traditional Asian fermented seasoning. J. Agric. Food Chem. 52, 980-986. https://doi.org/10.1021/jf034535y

Cited by

  1. Purification and biochemical characterization of a 17 kDa fibrinolytic enzyme from Schizophyllum commune vol.48, pp.6, 2010, https://doi.org/10.1007/s12275-010-0384-3
  2. A low molecular weight chymotrypsin-like novel fibrinolytic enzyme from Streptomyces sp. CS624 vol.46, pp.7, 2011, https://doi.org/10.1016/j.procbio.2011.03.016