Relationship Between the Dose of Clodronate and Serum Level of Alkaline Phosphatase, Calcium, and Phosphate During Orthodontic Tooth Movement

  • Choi, Josefina (Dept. of Orthodontics, School of Dentistry, Dental Research Institute, Seoul National University) ;
  • Baek, Seung-Hak (Dept. of Orthodontics, School of Dentistry, Dental Research Institute, Seoul National University) ;
  • Chang, Young-Il (Dept. of Orthodontics, School of Dentistry, Dental Research Institute, Seoul National University)
  • Received : 2009.11.12
  • Accepted : 2010.03.16
  • Published : 2010.06.30

Abstract

Objective : To evaluate the relationship between the dose of Clodronate and serum level of alkaline phosphatase (ALP), calcium (Ca), and phosphate (PO4) during orthodontic tooth movement MaterialS and MethodS: A total of 18 sex-matched Wistar rats (weight=180~230g, mean age=8 weeks) were allocated into the 2.5mM Clodronate (2.5C) group, 10mM Clodronate (10C) group, or control group (n=6 for each group). After the application of a nickel-titanium closed coil spring (force of 60g) between the upper central incisors and first molars (UFM), 2.5C, 10C, or saline was injected every third day into the subperiosteum of the alveolar bone adjacent to UFM for the experimental and control groups. The animals were sacrificed 17 days later. Trunk blood was quickly collected into a heparinized tube and centrifuged at 2,000 rpm for 20 min. The plasma was used for the biochemical assays of the serum level of ALP, Ca, and PO4. Kruskall-Wallis test and Mann-Whitney test with Bonferroni correction were performed for the statistical analyses. Results : Dose-dependent increase in the level of ALP (P<0.01) and decrease in the level of Ca (P<0.001) were observed among the control, 2.5C, and 10C groups. Although there was no significant difference in PO4 between the 2.5C and 10C groups, the 10C group showed a significantly higher level of PO4 than the control group (P<0.01). Conclusion : Since Clodronate induced significant dose-dependent change in the serum level of ALP, Ca, and PO4 during orthodontic tooth movement, orthodontists should consider these biochemical markers not only as a diagnostic tool for bone turnover rate but also as a monitoring tool for orthodontic tooth movement.

Keywords

References

  1. Rogers MJ. New insights into the molecular mechanisms of action of bisphosphonates, Curr Pharm Des. 2003;9:2643-58. https://doi.org/10.2174/1381612033453640
  2. Fleisch H. Bisphosphonates. Pharmacology and use in the treatment of tumour-induced hypercalcaemic and metastatic bone disease. Drugs. 1991;42:919-44. https://doi.org/10.2165/00003495-199142060-00003
  3. Rodan GA, Balena R. Bisphosphonates in the treatment of metabolic bone diseases. Ann Med 1993;25:373-8. https://doi.org/10.3109/07853899309147299
  4. Nishikawa M, Akatsu T, Katayama Y, Yasutomo Y, Kado S, Kugai N, Yamamoto M, Nagata N . Bisphosphonates act on osteoblastic cells and inhibit osteoclast formation in mouse marrow cultures. Bone 1996;18:9-14. https://doi.org/10.1016/8756-3282(95)00426-2
  5. Vitte C, Fleisch H, Guenther HL. Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclastmediated resorption. Endocrinology 1996;137:2324-33 https://doi.org/10.1210/en.137.6.2324
  6. Vaisman DG, McCarthy AD, Cortizo AM. Bone-specific alkaline phophatase activity is inhibited by bisphophonates. Biol Trace Element Res. 2005;104:131-40. https://doi.org/10.1385/BTER:104:2:131
  7. Szulc P, Delmas PD. Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos Int. 2008;19:1683-704. https://doi.org/10.1007/s00198-008-0660-9
  8. Garnero P. Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring. Mol Diagn Ther. 2008;12:157-70. https://doi.org/10.1007/BF03256280
  9. Eastell R, Barton I, Hannon RA, Chines A, Garnero P, Delmas PD. Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res.2003;18:1051-6. https://doi.org/10.1359/jbmr.2003.18.6.1051
  10. Reginster JY, Sarkar S, Zegels B, Henrotin Y, Bruyere O, Agnusdei D, Collette J. Reduction in PINP, a marker of bone metabolism, with raloxifene treatment and its relationship with vertebral fracture risk. Bone. 2004;34:344-51. https://doi.org/10.1016/j.bone.2003.10.004
  11. Chen P, Satterwhite JH, Licata AA, Lewiecki EM, Sipos AA, Misurski DM, Wagman RB. Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J Bone Miner Res. 2005;20:962-70. https://doi.org/10.1359/JBMR.050105
  12. Bauer DC, Garnero P, Bilezikian JP, Greenspan SL, Ensrud KE, Rosen CJ, Palermo L, Black DM. Short-term changes in bone turnover markers and bone mineral density response to parathyroid hormone in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2006;91:1370-5. https://doi.org/10.1210/jc.2005-1712
  13. Rodan GA. Introduction to bone biology. Review. Bone. 1992;13 Suppl 1:S3-6.
  14. Van Hoof VO, De Broe ME. Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. Clin Lab Sci. 1994;3:197-293
  15. Whyte M.P., ALP in hypophosphatasia, Endocr Rev. 1994;15:439-61.
  16. Christenson RH. Biochemical markers of bone metabolism: an overview. Clin Biochem. 1997;30:573-93. https://doi.org/10.1016/S0009-9120(97)00113-6
  17. Kuru L, Griffiths GS, Petrie A, Olsen I. Alkaline phosphatase activity is upregulated in regenerating human periodontal cells. J Periodontal Res. 1999;34:123-7. https://doi.org/10.1111/j.1600-0765.1999.tb02231.x
  18. Igarashi K, Hirafuji M, Adachi H, Shinoda H, Mitani H. Effects of bisphosphonates on alkaline phosphatase activity, mineralization, and prostaglandin E2 synthesis in the clonal osteoblast-like cell line MC3T3-E1 .Prostaglandins Leukot Essent Fatty Acids. 1997;56:121-5. https://doi.org/10.1016/S0952-3278(97)90508-1
  19. Klein BY, Ben-Bassat H, Breuer E, Solomon V, Golomb G. Structurally different bisphosphonates exert opposing effects on alkaline phosphatase and mineralization in marrow osteoprogenitors. J Cell Biochem. 1998;68:186-94. https://doi.org/10.1002/(SICI)1097-4644(19980201)68:2<186::AID-JCB5>3.0.CO;2-R
  20. Mundy GR.The hypercalcemia of malignancy.Kidney Int. 1987 Jan;31(1):142-55. https://doi.org/10.1038/ki.1987.21
  21. Broadus AE, Mangin M, Ikeda K, Insogna KL, Weir EC, Burtis WJ, Stewart AF. Humoral hypercalcemia of cancer. Identification of a novel parathyroid hormone-like peptide. N Engl J Med. 1988;319:556-63. https://doi.org/10.1056/NEJM198809013190906
  22. Martin TJ. Properties of parathyroid hormone related protein and its role in malignant hypercalcemia. Q J Med. 1990;76:771-86.
  23. Smallridge RC, Wray HL, Schaaf M.Hypocalcemia with osteoblastic metastases in patient with prostate carcinoma. A cause of secondary hyperparathyroidism.Am J Med. 1981 Jul;71(1):184-8. https://doi.org/10.1016/0002-9343(81)90292-8
  24. Potts JT Jr, Kronenberg HM, Rosenblatt M.Parathyroid hormone: chemistry, biosynthesis, and mode of action.Adv Protein Chem. 1982;35:323-96. https://doi.org/10.1016/S0065-3233(08)60471-4
  25. Papapoulos SE, Harinck HI, Bijvoet OL, Gleed JH, Fraher LJ, O'Riordan JL. Effects of decreasing serum calcium on circulating parathyroid hormone and vitamin D metabolites in normocalcaemic and hypercalcaemic patients treated with APD. Bone Miner. 1986;1:69-78.
  26. Francini G, Gonnelli S, Petrioli R, Conti F, Paffetti P and Gennari C.Treatment of bone metastases with dichloromethylene bisphosphonate. J Clin Oncol. 1992;10:591-8. https://doi.org/10.1200/JCO.1992.10.4.591
  27. Adachi H, Igarashi K, Mitani H, Shinoda H. Effects of topical administration of a bisphosphonate (risedronate) on orthodontic tooth movements in rats. J Dent Res 1994;73:1478-86. https://doi.org/10.1177/00220345940730081301
  28. Liu L, Igarashi K, Haruyama N, Saeki S, Shinoda H, Mitani H. Effects of local administration of clodronate on orthodontic tooth movement and root resorption in rats. Eur J Orthod 2004;26:469-73. https://doi.org/10.1093/ejo/26.5.469
  29. Igarashi K, Mitani H, Adachi H, Shinoda H. Anchorage and retentive effects of a bisphosphonate (AHBuBP) on tooth movements in rats. Am J Orthod Dentofacial Orthop 1994;106:279-289. https://doi.org/10.1016/S0889-5406(94)70048-6
  30. Keles A, Grunes B, Difuria C, Gagari E, Srinivasan V, Darendeliler MA, Muller R, Kent R Jr, Stashenko P. Inhibition of tooth movement by osteoprotegerin vs. pamidronate under conditions of constant orthodontic force. Eur J Oral Sci 2007;115:131-6. https://doi.org/10.1111/j.1600-0722.2007.00433.x
  31. Rinchuse DJ, Rinchuse DJ, Sosovicka MF, Robison JM, Pendleton R. Orthodontic treatment of patients using bisphosphonates: a report of 2 cases. Am J Orthod Dentofacial Orthop. 2007;131:321-6. https://doi.org/10.1016/j.ajodo.2006.11.002
  32. Leiker BJ, Nanda RS, Currier GF, Howes RI, Sinha PK. The effects of exogenous prostaglandins on orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 1995;108:380-8. https://doi.org/10.1016/S0889-5406(95)70035-8
  33. Rody WJ Jr, King GJ, Gu G. Osteoclast recruitment to sites of compression in orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2001;120:477-89. https://doi.org/10.1067/mod.2001.118623
  34. Capparelli C, Morony S, Warmington K, Adamu S, Lacey D, Dunstan CR, Stouch B, Martin S, Kostenuik PJ. Sustained antiresorptive effects after a single treatment with human recombinant osteoprotegerin (OPG): a pharmacodynamic and pharmacokinetic analysis in rats. J Bone Miner Res 2003;18:852-8. https://doi.org/10.1359/jbmr.2003.18.5.852
  35. Perinetti G, Paolantonio M, D'Attilio M, D'Archivio D, Tripodi D, Femminella B, Festa F, Spoto G. Alkaline Phosphatase activity in gingival crevicular fluid during human orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2002;122:548-56. https://doi.org/10.1067/mod.2002.126154
  36. Lilja E, Lindskog S, Hammarström L. Alkaline phosphatase activity and tetracycline incorporation during initial orthodontic tooth movement in rats. Acta Odontol Scand. 1984;42:1-11. https://doi.org/10.3109/00016358409041125
  37. Engström C, Granström G, Thilander B. Effect of orthodontic force on periodontal tissue metabolism. A histologic and biochemical study in normal and hypocalcemic young rats. Am J Orthod Dentofacial Orthop. 1988;93:486-95. https://doi.org/10.1016/0889-5406(88)90077-7
  38. Yamaguchi M, Shimizu N, Shibata Y, Abiko Y. Effects of different magnitudes of tension-force on alkaline phosphatase activity in periodontal ligament cells. J Dent Res. 1996;75:889-94. https://doi.org/10.1177/00220345960750030501
  39. Klein-Nulend J, Veldhuijzen JP, De Jong M, Burger EH. Increased bone formation and decreased bone resorption in fetal mouse calvaria as a result of intermittent compressive force in vitro. Bone Miner. 1987;2:441-8.
  40. Ozawa H, Imamura K, Abe E, Takahashi N, Hiraide T, Shibasaki Y, Fukuhara T, Suda T. Effect of a continuously applied compressive pressure on mouse osteoblast-like cells (MC3T3-E1) in vitro. J Cell Physiol. 1990;142:177-85. https://doi.org/10.1002/jcp.1041420122
  41. King GJ, Keeling SD, Wronski TJ. Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone. 1991;12:401-9. https://doi.org/10.1016/8756-3282(91)90029-I
  42. Keeling SD, King GJ, McCoy EA, Valdez M. Serum and alveolar bone phosphatase changes reflect bone turnover during orthodontic tooth movement. Am J Orthod Dentofacial Orthop.1993; 103:320-6. https://doi.org/10.1016/0889-5406(93)70012-D
  43. Delmas PD, Demiaux B, Malaval L, Chapuy MC, Edouard C, Meunier PJ. Serum bone gamma carboxyglutamic acid-containing protein in primary hyperparathyroidism and in malignant hypercalcemia. Comparison with bone histomorphometry. J Clin Invest. 1986;77:985-91. https://doi.org/10.1172/JCI112400
  44. Ureña P, Hruby M, Ferreira A, Ang KS, de Vernejoul MC. Plasma total versus bone alkaline phosphatase as markers of bone turnover in hemodialysis patients. J Am Soc Nephrol. 1996;7:506-12.
  45. Eriksen EF, Charles P, Melsen F, Mosekilde L, Risteli L, Risteli J. Serum markers of type I collagen formation and degradation in metabolic bone disease: correlation with bone histomorphometry. J Bone Miner Res. 1993;8:127-32.