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SURFACES WITH PLANAR LINES OF CURVATURE

Dong-Soo Kim1 and Young Ho Kim2

Abstract. We study surfaces in the 3-dimensional Euclidean space
with two family of planar lines of curvature. As a result, we estab-
lish some characterization theorems for such surfaces.

1. Introduction

Consider a smooth surface M in the Euclidean space E3 with a unit
normal vector field U . Then on each tangent plane TpM the shape
operator S is defined as follows:

S(v) = −∇vU,

where ∇vU denotes the covariant derivative of U in the v direction.
For a unit vector u tangent to M at a point p, the number k(u) =

〈S(u), u〉 is called the normal curvature of M in the u direction. The
maximum and minimum values of the normal curvature k(u) of M at
p are called the principal curvatures of M at p, and are denoted by k1

and k2. The directions in which these extreme values occur are called
principal directions of M at p.

A regular curve X in M is called a line of curvature provided that
the velocity X ′ of X always points in a principal direction. Through
each non-umbilic point of M , there are exactly two lines of curvature,
which necessarily cut orthogonally across each other.
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The next theorem is useful to find lines of curvature on some classes
of surfaces:

Theorem of Joachimstahl. Suppose that M1 and M2 intersect along
a regular curve X and make an angle θ(p), p ∈ X. Assume that X is a
line of curvature of M1. Then X is a line of curvature of M2 if and only
if θ(p) is constant.

Proof. See the proof of Theorem 9 in ([10], p. 296).

Note that every regular curve on a plane is a line of curvature. Using
above theorem, it is easy to show the following: The meridians and
parallels on a surface of revolution are its lines of curvature.

For a plane curve X in a plane P , the cylinder M over X is a ruled
surface generated by a one-parameter family of straight lines through
each point X(s) which are orthogonal to the plane P . Theorem of
Joachimstahl also shows that the straight lines, and the intersection of
M and each plane parallel to the plane P are lines of curvature of M .

Hence we see that cylinders and surfaces of revolution satisfy the
following condition:

(C) Around each point p ∈ M , there exists a local orthonormal
frame {E1, E2} whose integral curves are planar lines of curvature.

In this paper, we study smooth surfaces M in the Euclidean space E3

which satisfy the condition (C). As a result, we establish some charac-
terization theorems for such surfaces. Furthermore, we give a condition
for such a surface to be a surface of revolution.

2. Slant cylinders and generalized slant cylinders

For a fixed unit speed plane curve X(s) = (x(s), y(s), 0), let T (s) =
X ′(s) and N(s) = (−y′(s), x′(s), 0) denote the unit tangent and principal
normal vector, respectively. The curvature κ(s) of X(s) is defined by
T ′(s) = κ(s)N(s) and we have T (s) × N(s) = V, where V denotes the
unit vector (0, 0, 1). For a constant θ, we let Y (s) = cos θN(s) + sin θV .
Then the ruled surface M defined by

(2.1) F (s, t) = X(s) + tY (s)

is regular at (s, t) where 1 − cos θκ(s)t does not vanish. This ruled
surface M is called a slant cylinder over X(s). For the unit normal
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vector U = − sin θN(s) + cos θV , M satisfies

〈Fs, Ft〉 = 0, 〈Fst, U〉 = 0.

This shows that the coordinates lines of F are lines of curvature of M
with corresponding principal curvatures

(2.2) k1(s, t) =
−κ(s) sin θ

1− κ(s)t cos θ
, k2(s, t) = 0,

respectively. Hence F (s, t) is a principal curvature coordinate system
of the flat slant cylinder M([6], p. 53). Since the coordinate lines of F
are planar, it follows that the slant cylinder M satisfies the condition
(C). The slant cylinder with sin θ = 0 or cos θ = 0 is nothing but a
parametrization of either a plane or a usual cylinder.

In general, we consider another unit speed plane curve W (t) = (z(t),
w(t)). If we let Ys(t) = z(t)N(s)+w(t)V , then the parametrized surface
defined by

(2.3) H(s, t) = X(s) + Ys(t)

is regular at (s, t) where 1−κ(s)z(t) does not vanish. This parametrized
surface M is called a generalized slant cylinder over X(s). For the unit
normal vector U(s, t) = −w′(t)N(s) + z′(t)V , M satisfies

〈Hs,Ht〉 = 0, 〈Hst, U〉 = 0.

This shows that H(s, t) is a principal curvature coordinate system of M
with corresponding principal curvatures

(2.4) k1(s, t) =
−κ(s)w′(t)
1− κ(s)z(t)

, k2(s, t) = κ(t),

respectively, where κ(t) = z′(t)w′′(t)− z′′(t)w′(t) denotes the curvature
of W (t). It is obvious that the coordinate lines of H are planar. Hence
we see that the generalized slant cylinder also satisfies the condition (C).

If W (t) is a straight line, then the generalized slant cylinder H(s, t)
is nothing but a slant cylinder. Furthermore, we prove the following.

Proposition 1. If a plane curve X(s) is a circle, then the generalized
slant cylinder M over X(s) is a surface of revolution.

Proof. Suppose that X(s) is a circle of radius r. Then it is straight-
forward to show that for each fixed t, s curve of the generalized slant
cylinder H defined in (2.4) is a circle of radius r−z(t) with principal nor-
mal vector N(s). Hence the s curve through H(0, t) is a circle centered



780 Dong-Soo Kim1 and Young Ho Kim2

at

C(t) = H(0, t) + {r − z(t)}N(0) = X(0) + rN(0) + w(t)V,

which parametrizes a fixed straight line l in the direction of V . Thus M
is a surface of revolution with axis l.

Therefore the class of generalized slant cylinders contains both the
class of slant cylinders and the class of surfaces of revolution.

3. Some characterizations

Suppose that a smooth surface M in the Euclidean space E3 satisfies
the condition (C). If we let E3 = E1×E2, then {E1, E2, E3} is a principal
frame field on M([9], p. 261). For the dual 1-forms θ1, θ2 of E1, E2 the
connection forms are given by

(3.1) ω12 = g1θ1 + g2θ2, ω13 = k1θ1, ω23 = k2θ2,

where g1, g2 are some functions and k1, k2 denote the principal curvatures
in the direction of E1, E2, respectively. Hence the covariant derivatives
of Ei(i = 1, 2, 3) with respect to Ej(j = 1, 2) are given by

(3.2) ∇E1E1 = g1E2 + k1E3,∇E1E2 = −g1E1,∇E1E3 = −k1E1,

(3.3) ∇E2E1 = g2E2,∇E2E2 = −g2E1 + k2E3,∇E2E3 = −k2E2,

respectively.
From the Codazzi equations we have([9], p. 262)

(3.4) E1(k2) = (k1 − k2)g2,

(3.5) E2(k1) = (k1 − k2)g1.

For the Gaussian curvature K of M the second structural equation
gives([9], p. 263)

(3.6) K = k1k2 = E2(g1)−E1(g2)− g2
1 − g2

2.

It follows from (3.2) that the integral curves of E1 are planar if and only
if

(3.7) g1E1(k1)− k1E1(g1) = 0.
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Similarly, we see that the integral curves of E2 are planar if and only if

(3.8) g2E2(k2)− k2E2(g2) = 0.

Furthermore, for each i = 1, 2, the integral curves of Ei lie on a plane
V ⊥

i normal to Vi, which is given by

(3.9) V1 =
−k1E2 + g1E3√

k2
1 + g2

1

, V2 =
k2E1 + g2E3√

k2
2 + g2

2

,

unless the denominators vanish. It is obvious from the condition (C)
that

(3.10) ∇EiVi = 0, i = 1, 2.

First of all we prove the following:
Theorem 2. A flat surface M in the Euclidean space E3 satisfies the
condition (C) if and only if it is locally a slant cylinder over a plane
curve.

Proof. Suppose that a flat surface M satisfies the condition (C). We
denote by P the set of planar points and by W = M − P the set of
parabolic points. Then P is closed and W is open in M . On a connected
component W1 of W , we may assume that k1 does not vanish. Hence k2

vanishes identically on W1. By reversing the direction of E1 if necessary,
we may assume that k1 > 0. Hence (3.4) shows that g2 = 0. Thus it
follows from (3.3) that the E2 curve through a point p ∈ W1 is an open
segment of a straight line, which parametrizes a unique asymptotic line
segment through p. Using (3.7), we see that g1 = h1k1 for a function h1

satisfying E1(h1) = 0. Therefore we get from (3.5) and (3.6) that

g2
1 = E2(g1) = g2

1 + E2(h1)k1,

which shows that h1 is a constant c, that is, g1 = ck1. Thus we obtain
from (3.9) that

(3.11) V1 =
−E2 + cE3√

1 + c2
.

Since g2 = k2 = 0, (3.3) and (3.10) show that V1 is a constant vector.
Hence every E1 curve lies in a plane V ⊥

1 .
We now prove Theorem 2 in the following procedures.

Step 1. Let `(p) be the maximal asymptotic line segment through a
point p ∈ W . Then we have `(p) ⊂ W .
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Proof. We parametrize `(p) by p + tE2(p). Since g1 = ck1, it follows
from (3.5) that dk1

dt = ck2
1. Hence we have k1(t) = 1

c−dt , which cannot
vanish along `(p). This completes the proof.

For a point p in the boundary bd(W ) of the set W , we prove the
following.
Step 2. Let p ∈ bd(W ) ⊂ M . Then through p there passes a unique
open segment of straight line `(p) ⊂ M . Furthermore, `(p) ⊂ bd(W ),
that is, bd(W ) consists of open segments of asymptotic lines.

Proof. Let p ∈ bd(W ). On a neighborhood O around p, let {E1, E2}
be a principal orthonormal frame on O with principal curvatures k1, k2,
respectively, which appears in the condition (C). On O ∩W the Gauss-
ian curvature k1k2 vanishes everywhere, but k1 and k2 does not vanish
simultaneously. Since p is a limit point of W , it is possible to choose a
sequence {pn} in O ∩W which converges to p as n →∞.

Without loss of generality, we may assume that there exists such
a sequence {pn} as above with k1(pn) 6= 0, n = 1, 2, · · · . Then in a
neighborhood of pn, k2 vanishes identically. Put φ : (−δ1, δ1)× U → O
be the unique trajectory of E2 with φ(0, q) = q in a neighborhood U
of p. Then φ(t, pn) is nothing but a parametrization of the asymptotic
line segment `(pn) through pn. This shows that ∇E2E2(φ(t, pn)) = 0
for each n = 1, 2, · · · and |t| < δ1. By letting n → ∞, we see that
∇E2E2(φ(t, p)) = 0 for all t with |t| < δ1. Thus φ(t, p) is an asymptotic
line segment through p in the direction of E2.

Suppose that there exists another sequence {qn} in O ∩ W with
k2(qn) 6= 0, n = 1, 2, · · · , which converges to p as n → ∞. Then, as
before, we see that the unique trajectory ψ(t, qn) of E1, |t| < δ2, con-
verges to a line segment ψ(t, p) through p. For sufficiently large n, the
line segment φ(t, pn) through pn should meet the line segment ψ(t, p) at a
point q in O. This is a contradiction, because Step 1 shows that φ(t, pn)
and ψ(t, p) belong to the sets W and P, respectively. This contradic-
tion shows that for a sufficiently small neighborhood O of p, k1 does
not vanish on O ∩W and the integral curve φ(t, p) of E2 is the unique
asymptotic line segment through p, which we will denote by `(p).

Next, we assert that every point of `(p) on M is a boundary point of
W . In fact, if q ∈ `(p), there exists a sequence qn = φ(t, pn) in W with
pn → p, and hence qn → q as n →∞. Thus q belongs to the closure of
W . Assume that q does not belong to bd(W ). Then q ∈ W . Since `(p)
is the unique asymptotic line segment through q ∈ W , we get p ∈ W ,
which is a contradiction.
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Note that each connected component of int(P ) is an open part of a
plane.

Now we give a proof of Theorem 2. It suffices to show that the
theorem holds in a neighborhood of a point p ∈ bd(W ). Let p be a
point in the boundary of W , and {E1, E2} an orthonormal frame in a
neighborhood of p as in the proof of Step 2. Without loss of generality,
we may assume that the line segment `(p) is in the direction of E2. Then
the proof of Step 2 shows that there exists a neighborhood O of p such
that ∇E2E2 = 0 and k1 does not vanish on O ∩ W . It follows from
the condition (C) that for the constant vector V1 in (3.11), every E1

curve on O ∩ int(P ) parametrizes an open segment of the straight line
V ⊥

1 ∩ int(P ) which is orthogonal to `(p). Every E2 curve on O ∩ int(P )
is also an open segment of a straight line which is parallel to `(p).

Let X(s) denote an E1 curve through p which lies in the plane V ⊥
1

and N(s) = V1 × E1(s) the principal normal. It follows from Theorem
of Joachimstahl that 〈E3, V1〉 is constant along X(s), hence we have for
a constant θ, E2(s) = cos θN(s) + sin θV1. Hence O is an open part of
the following slant cylinder:

F (s, t) = X(s) + tE2(s).

This completes the proof of Theorem 2.

Example 1 in ([4], p.409) describes a flat surface which satisfies the
condition (C). It is locally(but not globally) an open part of a slant
cylinder.

Now, suppose that a non-flat surface M satisfies the condition (C).
Then by reversing the unit vector E1(hence E3 = E1 × E2 is also re-
versed) if necessary, we may assume that k1 > 0, k2 6= 0. It follows from
(3.7) and (3.8) that

(3.12) gi = hiki, Ei(hi) = 0, i = 1, 2.

We prove the following :
Theorem 3 Suppose that a non-flat surface M satisfies the condition
(C). Then every E2 curve is a geodesic(that is, g2 = 0) if and only if it
is a generalized slant cylinder over an E1 curve. In either case, we have

(3.13) E2(h1) = (1 + h2
1)k2.

Proof. Suppose that g2 vanishes identically on M . Then from (3.3)
we get

(3.14) ∇E2E1 = 0,∇E2E2 = k2E3,∇E2E3 = −k2E2,
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Furthermore, (3.13) follows from (3.5), (3.6) and (3.12). Since M is
non-flat, it follows from (3.9) that

(3.15) V1 =
−E2 + h1E3√

1 + h2
1

, V2 = E1,

which shows that V1, V2 are orthogonal to each other. By differentiating
V1 in (3.15) with respect to E2, (3.14) shows that

(3.16)
(1 + h1)3/2∇E2V1 =g2(1 + h2

1)E1 + h1{E2(h1)− (1 + h2
1)k2}E2

+{E2(h1)− (1 + h2
1)k2}E3.

Together with (3.10), (3.13) and (3.16) show that V1 is a constant vector.
We denote by X(s) an E1 curve. Then X(s) lies on a plane V ⊥

1

perpendicular to V1 and N(s) = V1 × E1(s) is the principal normal
to X(s). Note that for each s, the E2 curve through X(s) lies in the
plane V ⊥

2 . Since V ⊥
2 is orthogonal to V2(s) = E1(s), it is spanned by

{N(s), V1}. Thus we see that

(3.17) H(s, t) = X(s) + z(s, t)N(s) + w(s, t)V1

is a parametrization of the surface M , where z(s, t) and w(s, t) are some
functions which satisfy

(3.18) z(s, 0) = w(s, 0) = 0, z2
t + w2

t = 1.

Now we show that z(s, t), w(s, t) can be chosen so that they depend
only on t. For this purpose, first of all we assert that for any (s0, t0),
wt(s0, t0) 6= 0. Otherwise, differentiating the last equation in (3.18) with
respect to t, we have ztt(s0, t0) = 0. Hence we get at (s0, t0)

(3.19) k2E3 = ∇E2E2 = Htt = wttV1,

where the first equality follows from (3.14). Since M is non-flat, k2(s0, t0)
6= 0. Thus (3.19) shows that

V1 = ±E3(s0, t0),

which contradicts to (3.15). This contradiction implies that wt(s0, t0) 6=
0.

Note that the E1 curve through H(s0, t0) is contained in the plane
V ⊥

1 through H(s0, t0). Hence it follows from (3.17) that the E1 curve is
contained in the set {H(s, t)|w(s, t) = w(s0, t0)}. Since wt(s0, t0) 6= 0,
we see that

(3.20) Xt0(s) = H(s, f(s)),
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is a reparametrization of the E1 curve through H(s0, t0), where f(s)
satisfies

(3.21) f(s0) = t0, w(s, f(s)) = w(s0, t0).

By differentiating (3.20) with respect to s, (3.17) and (3.21) show that

(3.22) X ′
t0(s) = {1− κ(s)z(s, f(s))}E1(s) + { d

ds
z(s, f(s))}N(s).

On the other hand, it follows from (3.20) that X ′
t0(s) is proportional to

E1(s, f(s)). Furthermore, the first equation in (3.14) shows that E1 is
parallel along t−curve of H so that we have E1(s, f(s)) = E1(s, 0) =
E1(s). Hence it follows from (3.21) and (3.22) that

(3.23) z(s, f(s)) = z(s0, t0).

Thus we have

(3.24)
Xt0(s) = X(s) + z(s, f(s))N(s) + w(s, f(s))V1

= X(s) + z(s0, t0)N(s) + w(s0, t0)V1,

where the second equality follows from (3.21) and (3.23). Since t0 is
arbitrary, if we let z(t) = z(s0, t), w(t) = w(s0, t), then (3.24) implies
that

H(s, t) = X(s) + z(t)N(s) + w(t)V1

is a reparametrization of M . This shows that M is a generalized slant
cylinder over an E1 curve X(s).

Finally, suppose that M is a generalized slant cylinder over an E1

curve X(s) of which parametrization H(s, t) is given in (2.3). Then
every E2 curve is a t−curve of H. Since Htt is orthogonal to Ht and Hs,
every t curve of H is a geodesic of M , that is, g2 vanishes identically.
Together with (3.16), constancy of V = V1 shows that (3.13) holds. This
completes the proof.

There exist surfaces in the Euclidean space E3 which satisfy the con-
dition (C), but not an open part of a generalized slant cylinder. For
example, the Enneper’s minimal surface and the family of associated
Bonnet surfaces are cases of these kinds([1], [3], [8]).
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4. Linear Weingarten surfaces with planar lines of curva-
ture

Suppose that a non-flat and non-minimal linear Weingarten surface
M in the Euclidean space E3 satisfies the condition (C). Hence we have
k2 = ak1+b, k1 6= 0, k2 6= 0, where a, b are constant with (a+1)2+b2 6= 0
and a2 + b2 6= 0. Furthermore we assume that M has no umbilic points,
that is, k1 6= k2. By reversing the unit vector E1(hence E3 = E1×E2 is
also reversed) if necessary, we assume that k1 > 0.

From (3.4), (3.5) and (3.6) we obtain

(4.1) aE1(k1) = {(1− a)k1 − b}g2,

(4.2) E2(k1) = {(1− a)k1 − b}g1,

(4.3) k1(ak1 + b) = E2(g1)− E1(g2)− g2
1 − g2

2.

By differentiating (4.1) and (4.2) with respect to E2, E1, respectively,
we obtain

(4.4) aE2E1(k1) = (1− a){(1− a)k1 − b}g1g2 + {(1− a)k1 − b}E2(g2),

(4.5) aE1E2(k1) = (1−a){(1−a)k1− b}g1g2 +a{(1−a)k1− b}E1(g1).

On the other hand, from (3.2), (3.3), (4.1) and (4.2) we have

a{E2E1(k1)− E1E2(k1)} =a{∇E2E1(k1)−∇E1E2(k1)}
=a{g2E2(k1) + g1E1(k1)}
=(a + 1){(1− a)k1 − b}g1g2.

Hence (4.4) and (4.5) show that

(4.6) E2(g2)− aE1(g1) = (a + 1)g1g2.

1) First, we consider the case a 6= 0. It follows from (3.12) that g1 =
h1k1, g2 = h2(ak1+b) for some functions satisfying E1(h1) = E2(h2) = 0.
Substituting these into (4.6), we get

(4.7) h1h2{a(a + 1)k2
1 + 2bk1 − b2} = 0.

Suppose that h1h2 6= 0 on an open set W . Then (4.7) shows that k1

is a root of a nontrivial polynomial of degree 1 or 2. Hence k1(and
hence k2)is constant. This shows that W is an open part of either
a circular cylinder(flat) or a sphere(umbilic)([C]), which contradicts to
the hypotheses. Thus h1h2(hence g1g2) vanishes identically on M .
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Since M is non-flat, (4.3) shows that g1, g2 cannot vanish simultane-
ously on an open set. Hence we may assume that W1 = {p ∈ M |g1(p) 6=
0} is nonempty. Since g2 vanishes identically on W1, Theorem 3 shows
that W1 is a generalized slant cylinder over an E1 curve X(s). It follows
from (4.1) and (4.6) that

(4.8) E1(k1) = E1(g1) = 0.

Since X ′′(s) = ∇E1E1 = g1E2 + k1E3, (4.8) shows that the plane curve
X(s) has nonzero constant curvature

√
k2

1 + g2
1. Hence X(s) is a circle.

It follows from Proposition 1 that W1 is a surface of revolution and each
parallel(that is, E1 curve) on W1 lies on a plane V ⊥

1 , where V1 is given
by

(4.9) V1 =
−E2 + h1E3√

1 + h2
1

.

It follows from (4.8) that g1 is constant on each parallel. Hence the
closure W 1 of W1 ⊂ M has boundary bd(W 1)(if any) consisting of open
segments of parallels which lie on some planes V ⊥

1 .
Now suppose that W2 = {p ∈ M |g2(p) 6= 0} is nonempty. Then, as

before, it follows from Proposition 1 and Theorem 3 that W2 is a surface
of revolution and each parallel(that is, E2 curve) on W2 lies on a plane
V ⊥

2 , where V2 is given by

(4.10) V2 =
−E1 + h2E3√

1 + h2
2

.

For a point p ∈ bd(W 2), the parallel C(p) through p on W 2 is also a
parallel on W 1. This implies that C(p) lies on both V ⊥

1 and V ⊥
2 , which

shows that V1 is parallel to V2. But from (4.9) and (4.10) we see that
V1 cannot be parallel to V2. This contradiction shows that W2 is empty,
and hence M is a surface of revolution.

2) Finally, we consider the case a = 0. Then we have k2 = b(6= 0).
Hence, (3.4) shows that g2 vanishes identically. It follows from (3.3) that
every E2 curve Y (t) is a circle of radius 1/|b|. Thus Theorem 3 shows
that M is a tube along an E1 curve X(s).
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5. Weingarten surfaces with planar lines of curvature

Suppose that a non-flat surface M satisfying the condition (C) also
satisfies the Weingarten condition:

(W) k2 = f(k1),

for some polynomial function f(x) of degree n(≥ 2) in x. Furthermore
we assume that M has no umbilic points. As in Section 4, we may
assume that k = k1 > 0. From (3.4), (3.5) and (3.6) we obtain

(5.1) f ′(k)E1(k) = {k − f(k)}g2,

(5.2) E2(k) = {k − f(k)}g1,

(5.3) kf(k) = E2(g1)− E1(g2)− g2
1 − g2

2.

By differentiating (5.1) and (5.2) with respect to E2, E1, respectively,
we obtain

(5.4)
f ′(k){E2E1(k)−E1E2(k)}

={k − f(k)}{−f ′′(k)E1(k)g1 + E2(g2)− f ′(k)E1(g1)}.
On the other hand, from (3.2), (3.3), (5.1) and (5.2) we have

(5.5)

f ′(k){E2E1(k)− E1E2(k)} =f ′(k){∇E2E1(k)−∇E1E2(k)}
=f ′(k){g2E2(k) + g1E1(k)}
={f ′(k) + 1}{k − f(k)}g1g2.

Hence (5.4) and (5.5) show that

(5.6) E2(g2)− f ′(k)E1(g1) = f ′′(k)E1(k)g1 + {f ′(k) + 1}g1g2.

It follows from (3.12) that g1 = h1k, g2 = h2f(k) for some functions
h1 and h2 satisfying E1(h1) = E2(h2) = 0. Substituting these into (5.6),
we get
(5.7)
h1h2[{k− f(k)}{f ′′(k)kf(k)− f ′(k)2k + f(k)}+ {f ′(k) + 1}kf(k)] = 0.

Suppose that h1h2 6= 0 on an open set W . Then (5.7) shows that
k = k1 is a root of some nontrivial polynomial of degree 3n− 1. Hence
k = k1(and hence k2)is constant there. Thus W is an open part of either
a circular cylinder(flat) or a sphere(umbilic)([2]). This contradiction
shows that h1h2(and hence g1g2) vanishes identically on M . Hence we
can proceed as in Section 4 to conclude that M is a surface of revolution.

Summarizing the results in Section 4 and 5, we establish the following.
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Theorem 4 Let M be a non-flat and non-minimal surface without um-
bilic points which satisfies the condition (C). Suppose that M is a Wein-
garten surface with

(W) k2 = f(k1),

where f is a polynomial of degree n(≥ 1). Then M is a surface of
revolution.

It is well-known that every surface of revolution is a Weingarten sur-
face ([7], pp. 91-92). According to H. Hopf([5]), surfaces of revolution
satisfying k2 = ak1(a ∈ R) are classified in ([7], pp. 92-93).
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