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INTERVAL-VALUED FUZZY IRRESOLUTE MAPPINGS
ON INTERVAL-VALUED FUZZY TOPOLOGICAL

SPACES

Won Keun Min and Myeong Hwan Kim

Abstract. We introduce the concepts of IVF irresolute mappings
and IVF irresolute open mappings, and investigate characteriza-
tions for such mappings on the interval-valued fuzzy topological
spaces.

1. Introduction

Zadeh [4] introduced the concept of fuzzy set and investigated basic
properties. Gorzalczany [1] introduced the concept of interval-valued
fuzzy set which is a generalization of fuzzy sets. In [3], Mondal and
Samanta introduced the concepts of interval-valued fuzzy topology, con-
tinuity and compactness and studied some topological properties. In
[2], Jun et al. introduced the concepts of IVF semiopen sets and IVF
semiopen mappings and studied some results about them.

In this paper, we introduce the concepts of IVF irresolute mappings
and IVF irresolute open mappings, and investigate characterizations for
such mappings.

2. Preliminaries

Let D[0, 1] be the set of all closed subintervals of the interval [0, 1].
The elements of D[0, 1] are generally denoted by capital letters M, N, · · ·
and note that M = [ML,MU ], where ML and MU are the lower and the
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upper end points respectively. Especially, we denote 0 = [0, 0],1 = [1, 1],
and a = [a, a] for a ∈ (0, 1). We also note that

(1) (∀M,N ∈ D[0, 1])(M = N ⇔ ML = NL,MU = NU ).
(2) (∀M,N ∈ D[0, 1])(M ≤ N ⇔ ML ≤ NL,MU ≤ NU ).

For every M ∈ D[0, 1], the complement of M , denoted by M c, is
defined by M c = 1−M = [1−MU , 1−ML]. Let X be a nonempty set.

A mapping A : X → D[0, 1] is called an interval-valued fuzzy set (simply,
IVF set) in X. For each x ∈ X, A(x) is a closed interval whose lower
and upper end points are denoted by A(x)L and A(x)U , respectively.
For any [a, b] ∈ D[0, 1], the IVF set whose value is the interval [a, b] for
all x ∈ X is denoted by ˜[a, b]. In particular, for any c ∈ [a, b], the IVF
set whose value is c = [c, c] for all x X is denoted by simply c̃. For a
point p ∈ X and for [a, b] ∈ D[0, 1] with b > 0, the IVF set which takes
the value [a, b] at p and 0 elsewhere in X is called an interval-valued
fuzzy point (simply, IVF point) and is denoted by [a, b]p. In particular,
if b = a, then it is also denoted by ap. Denoted by DX the set of all IVF
sets in X.

For every A,B ∈ DX , we define

A = B ⇔ (∀x ∈ X)([A(x)]L = [B(x)]L and [A(x)]U = [B(x)]U ),

A ⊆ B ⇔ (∀x ∈ X)([A(x)]L ⊆ [B(x)]L and [A(x)]U ⊆ [B(x)]U ).

The complement Ac of A is defined by

[Ac(x)]L = 1− [A(x)]U and [Ac(x)]U = 1− [A(x)]L

for all x ∈ X.

For a family of IVF sets {Ai : i ∈ J} where J is an index set, the
union G = ∪i∈JAi and F = ∩i∈JAi are defined by

(∀x ∈ X) ([G(x)]L = supi∈J [Ai(x)]L, [G(x)]U = supi∈J [Ai(x)]U ),

(∀x ∈ X) ([F (x)]L = infi∈J [Ai(x)]L, [F (x)]U = infi∈J [Ai(x)]U ), re-
spectively.

Let f : X → Y be a mapping and let A be an IVF set in X. Then
the image of A under f , denoted by f(A), is defined as follows

[f(A)(y)]L =
{

supf(x)=y[A(x)]L, if f−1(y) 6= ∅, y ∈ Y

0, otherwise ,

[f(A)(y)]U =
{

supf(x)=y[A(x)]U , if f−1(y) 6= ∅, y ∈ Y

0, otherwise ,
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for all y ∈ Y .

Let B be an IVF set in Y . Then the inverse image of B under f ,
denoted by f−1(B), is defined as follows

(∀x ∈ X)([f−1(B)(x)]L = [B(f(x))]L, [f−1(B)(x)]U = [B(f(x))]U ).

Definition 2.1 ([3]). A family τ of IVF sets in X is called an
interval-valued fuzzy topology (simply, IVFT) on X if it satisfies:

(1) 0,1 ∈ τ .
(2) A,B ∈ τ ⇒ A ∩B ∈ τ .
(3) For i ∈ J , Ai ∈ τ ⇒ ∪i∈JAi ∈ τ .
Every member of τ is called an IVF open set. An IVF set A is called

an IVF closed set if the complement of A is an IVF open set. And (X, τ)
is called an interval-valued fuzzy topological space (simply, IVFTS).

In an IVFTS (X, τ), for an IVF set A in X, the IVF closure and the
IVF interior of A, denoted by cl(A) and int(A), respectively, are defined
as

cl(A) = ∩{B ∈ DX : Bc ∈ τ and A ⊆ B},

int(A) = ∪{B ∈ DX : B ∈ τ and B ⊆ A},
respectively [3].

Definition 2.2 ([2]). Let A be an IVF set in an IVFTS (X, τ). Then
A is said to be IVF semiopen if A ⊆ cl(int(A)). A is said to be IVF
semiclosed if the complement of A is IVF semiopen. Denote the set
of all IVF semiopen (resp., IVF semiclosed) sets by IV FSO(X) (resp.,
IV FSC(X)).

Definition 2.3 ([2, 3]). Let (X, τ1) and (Y, τ2) be two IVFTS’s. Then
f : X → Y is said to be continuous (resp., IVF semicontinuous) if for
every B ∈ τ2, f−1(B) is IVF open (resp., IVF semiopen).

Definition 2.4 ([2]). Let (X, τ1) and (Y, τ2) be two IVFTS’s. Then
f : X → Y is said to be IVF open (resp., IVF semiopen) if for every
A ∈ τ1, f(A) is IVF open (resp., IVF semiopen).
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3. IVF Irresolute Mappings

Definition 3.1. Let f : X → Y be a mapping between IVFTS’s
(X, τ1) and (Y, τ2). Then f is said to be IVF irresolute if for every IVF
semiopen set U of Y , f−1(U) is IVF semiopen.

Every IVF irresolute mapping is IVF semicontinuous mapping but
the converse need not be true as seen in the next example.

Example 3.2. Let X = [0, 1] and let A, B and C be IVF sets defined
as follows

A(x) =





[13x, 2
3x], 0 ≤ x ≤ 1

2 ,
[−1

2x + 5
12 ,−2

3x + 2
3 ], 1

2 ≤ x ≤ 5
6 ,

[0,−2
3x + 2

3 ], 5
6 ≤ x ≤ 1;

B(x) = [13x, 1
2 ], 0 ≤ x ≤ 1;

C(x) =
{

[56x + 1
6 , x + 1

6 ], 0 ≤ x ≤ 5
6 ,

[56x + 1
6 , 1], 5

6 ≤ x ≤ 1.

Define IVF topologies τ1 and τ2 on X as follows

τ1 = {0, A,B,1}; τ2 = {0, A,1}
Note that the IVF set C is IVF semiopen in (X, τ2) but it is not an
IVF semiopen set in the IVFTS (X, τ1). Hence we know that obviously
the identity mapping f : (X, τ1) → (X, τ2) is an IVF semicontinuous
mapping but it is not IVF irresolute.

IVF continuous ⇒ IVF semicontinuous ⇐ IVF irresolute

In an IVFTS (X, τ), for an IVF set A in X, the IVF semi-closure and
the IVF semi-interior of A, denoted by scl(A) and sint(A), respectively,
are defined as

scl(A) = ∩{B ∈ DX : Bc ∈ IV FSC(X) and A ⊆ B};

sint(A) = ∪{B ∈ DX : B ∈ IV FSO(X) and B ⊆ A}.
Lemma 3.3. Let (X, τ) be an IVFTS and A ∈ DX .
(1) 1− sint(A) = scl(1−A).
(2) 1− scl(A) = sint(1−A).
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Theorem 3.4. Let f : X → Y be a mapping between IVFTS’s
(X, τ1) and (Y, τ2). Then the following statements are equivalent:

(1) f is IVF irresolute.
(2) f−1(B) is IVF semiclosed for each IVF semiclosed set B of Y .
(3) f(scl(A)) ⊆ scl(f(A)) for each A ∈ DY .
(4) scl(f−1(B)) ⊆ f−1(scl(B)) for each B ∈ DY .
(5) f−1(sint(B)) ⊆ sint(f−1(B)) for each B ∈ DY .

Proof. (1) ⇔ (2) From Definition 2.2, it is obvious.

(2) ⇒ (3) Let A be any IVF set in X. Since scl(f(A)) is an IVF semi-
closed set containing f(A), by (2), f−1(scl(f(A))) is IVF semiclosed and
A ⊆ f−1(scl(f(A))). So scl(A) ⊆ scl(f−1(scl(f(A))) = f−1(scl(f(A))).
It implies f(scl(A)) ⊆ scl(f(A)).

(3) ⇒ (4) Let B be any IVF set in Y . From (3), it follows that
f(scl(f−1(B))) ⊆ scl(f(f−1(B))) ⊆ scl(B). Hence scl(f−1(B)) ⊆
f−1(scl(B)).

(4) ⇒ (5) For any IVF set B of Y , from (4), it follows

f−1(sint(B)) = 1− (f−1(scl(1−B)))

⊆ 1− scl(f−1(1−B))

= sint(f−1(B)).

Hence f−1(sint(B)) ⊆ sint(f−1(B)).

(5) ⇒ (1) Let V be any IVF semiopen set in Y . By (5),

f−1(V ) = f−1(sint(V )) ⊆ sint(f−1(V )).

So f−1(V ) is an IVF semiopen set, and hence f is IVF irresolute.

Theorem 3.5. Let f : X → Y be a bijective mapping between
IVFTS’s (X, τ1) and (Y, τ2). Then f is IVF irresolute if and only if
sint(f(A)) ⊆ f(sint(A)) for each A ∈ DX .

Proof. Let f be IVF irresolute. Then for any IVF set A of X,
f−1(sint(f(A))) is IVF semiopen. From Theorem 3.4 and injectivity
of f , it follows f−1(sint(f(A))) ⊆ sint(f−1(f(A))) = sint(A). Since f
is surjective, sint(f(A)) = f(f−1(sint(f(A)))) ⊆ f(sint(A)).

For the converse, let B be any IVF semiopen set of Y . From hypoth-
esis and surjectivity of f , it follows

f(sint(f−1(B))) ⊇ sint(f(f−1(B))) = sint(B) = B.
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Since f is injective, sint(f−1(B))) ⊇ f−1(B), and so f−1(B) is IVF
semiopen. Hence f is IVF irresolute.

Definition 3.6. Let (X, τ) be an IVFTS. An IVF set A in X is said
to be IVF semicompact if for every IVF semiopen cover A = {Ai ∈
DX : Ai ∈ τ, i ∈ J} of A, there exists J0 = {1, 2, · · · , n} ⊆ J such that
A ⊆ ∪j∈J0Aj .

Theorem 3.7. Let f : (X, τ1) → (Y, τ2) be IVF irresolute on two
IVFTS’s. If A is an IVF semicompact set, then f(A) is also IVF semi-
compact.

Proof. Let {Bi ∈ DY : Bi ∈ τ2, i ∈ J} be an IVF semiopen cover of
f(A) in Y . Then {f−1(Bi) : i ∈ J} is an IVF semiopen cover of A in X.
By definition of IVF semicompactness, there exists J0 = {1, 2, · · · , n} ⊆
J such that A ⊆ ∪j∈J0(f

−1(Bj)). So

f(A) ⊆ f(∪j∈J0(f
−1(Bj)))

= ∪j∈J0f(f−1(Bj))
⊆ ∪j∈J0Bj .

Hence f(A) is IVF semicompact.

An IVF set A in an IVF topological space X is said to be IVF compact
[3] if every IVF open cover A = {Ai : i ∈ J} of A has a finite IVF
subcover.

Theorem 3.8. Let f : (X, τ1) → (Y, τ2) be IVF semicontinuous
on two IVFTS’s. If A is an IVF semicompact set, then f(A) is IVF
compact.

Proof. It is easily proved from the definition of IVF semicontinuity
and Theorem 3.7.

Definition 3.9. Let (X, τ1) and (Y, τ2) be two IVFTS’s. Then f :
X → Y is called an IVF irresolute open (resp., IVF irresolute closed
mapping if for every IVF semiopen (resp., IVF semiclosed) set A of X,
f(A) is IVF semiopen (resp., IVF semiclosed) in Y .

Every IVF irresolute open (resp., IVF irresolute closed) mapping is
IVF semiopen (resp., IVF semiclosed) but the converse need not be true.

Example 3.10. Consider the identity mapping f : (X, τ2) → (X, τ1)
in Example 3.2. Then f is an IVF semiopen mapping but not IVF
irresolute open.
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Theorem 3.11. Let f : X → Y be a mapping on IVFTS’s (X, τ1)
and (Y, τ2). The the following are equivalent:

(1) f is IVF irresolute open.
(2) f(sint(A)) ⊆ sint(f(A)) for A ∈ DX .
(3) sint(f−1(B)) ⊆ f−1(sint(B)) for B ∈ DY .
(4) For B ∈ DY and each IVF semiclosed set A of X with f−1(B) ⊆

A, there exists an IVF semiclosed set C of Y such that B ⊆ C and
f−1(C) ⊆ A.

Proof. (1) ⇒ (2) For A ∈ DX ,

f(sint(A)) = f(∪{B ∈ DX : B ⊆ A,B ∈ IV FSO(X)})
= ∪{f(B) ∈ DY : f(B) ⊆ f(A), f(B) ∈ IV FSO(Y )}
⊆ ∪{U ∈ DY : U ⊆ f(A), U ∈ IV FSO(Y )}
= sint(f(A)).

Hence f(sint(A)) ⊆ sint(f(A)).

(2) ⇒ (3) For B ∈ DY , from (2), we have

f(sint(f−1(B))) ⊆ sint(f(f−1(B))) ⊆ sint(B).

Hence sint(f−1(B)) ⊆ f−1(sint(B)).

(3) ⇒ (4) Let A be an IVF semiclosed set of X with f−1(B) ⊆ A
for B ∈ DY . Since 1 − A ⊆ 1 − f−1(B) = f−1(1 − B) and sint(1 −
A) = 1 − A ⊆ sint(f−1(1 − B)). By (3), 1 − A ⊆ sint(f−1(1 − B)) ⊆
f−1(sint(1−B)). Thus A ⊇ 1− (f−1(sint(1−B))) = f−1(1− sint(1−
B)) = f−1(scl(B)). Now set C = scl(B). Then C is an IVF semiclosed
set of Y such that B ⊆ C and f−1(C) ⊆ A.

(4) ⇒ (1) Let A be an IVF semiopen set of X. Then f−1(1−f(A)) =
1 − f−1(f(A)) ⊆ 1 − A and 1 − A is IVF semiclosed. By (4), there
exists an IVF semiclosed set C ∈ DY such that 1 − f(A) ⊆ C and
f−1(C) ⊆ 1−A. It implies 1−C ⊆ f(A) and f(A) ⊆ f(1− f−1(C)) =
f(f−1(1− C)) ⊆ 1− C.

Hence f(A) is an IVF semiopen set in Y .

Theorem 3.12. Let f : X → Y be a mapping on IVFTS’s (X, τ1)
and (Y, τ2). The the following are equivalent:

(1) f is IVF irresolute closed.
(2) scl(f(A)) ⊆ f(scl(A)) for A ∈ DX .
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Proof. (1) ⇒ (2) For A ∈ DX ,

f(scl(A)) = f(∩{B ∈ DX : A ⊆ B, B ∈ IV FSC(X)})
= ∩{f(B) ∈ DY : f(A) ⊆ f(B), f(B) ∈ IV FSC(Y )}
⊇ ∩{F ∈ DY : f(A) ⊆ F, F ∈ IV FSC(Y )}
= scl(f(A)).

Hence scl(f(A)) ⊆ f(scl(A)).

(2) ⇒ (1) Let A be an IVF semiclosed set in X. Then by (2),

scl(f(A)) ⊆ f(scl(A)) = f(A).

It implies f(A) is IVF semiclosed, and so f is IVF irresolute closed.

Theorem 3.13. Let f : X → Y be a bijective mapping between
IVFTS’s (X, τ1) and (Y, τ2). Then

(1) f is IVF irresolute closed.
(2) scl(f(A)) ⊆ f(scl(A)) for A ∈ DX .
(3) f−1(scl(B)) ⊆ scl(f−1(B)) for each B ∈ DY .

Proof. It is sufficient to show that (2) is equivalent to (3).
(2) ⇒ (3) For B ∈ DY , since f is surjective,

scl(B) = scl(f(f−1(B))) ⊆ f(scl(f−1(B))).

From injectivity of f ,

f−1(scl(B)) ⊆ f−1(f(scl(f−1(B)))) = scl(f−1(B)).

(3) ⇒ (2) Conversely, let A ∈ DX . Then from hypothesis and injec-
tivity of f , f−1(scl(f(A))) ⊆ scl(f−1(f(A))) = scl(A) Since f is surjec-
tive, f(scl(A)) ⊇ f(f−1(scl(f(A)))) = scl(f(A)). Hence the statement
(2) is obtained.
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