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COMMON FIXED POINT FOR COMPATIBLE
MAPPINGS OF TYPE(α) ON INTUITIONISTIC FUZZY

METRIC SPACE WITH IMPLICIT RELATIONS

Jong Seo Park

Abstract. In this paper, we will establish common fixed point for
compatible mappings of type(α) for four self mappings defined on
intuitionistic fuzzy metric space with implicit relations.

1. Introduction

Several authors([4], [5]) have introduced the basic concepts on fuzzy
metric spaces and fuzzy topological spaces induced by fuzzy metrics with
different ways. Grabiec[2] obtained the Banach contraction principle in
setting of fuzzy metric spaces. Also, I. Altun and D. Turkoglu[1] proved
some fixed theorems using implicit relations in fuzzy metric spaces.

Recently, Park et.al.[11] defined the intuitionistic fuzzy metric space,
and Park et.al.[7] proved a fixed point theorem of Banach for the con-
tractive mapping of a complete intuitionistic fuzzy metric space, and
Park and Kim[10] established common fixed point theorem for four self
maps in intuitionistic fuzzy metric space.

In this paper, we will obtain a unique common fixed point theorem for
compatible mappings of type(α) defined on intuitionistic fuzzy metric
space under implicit relations.

2. Preliminaries

We will give some definitions, properties of the intuitionistic fuzzy
metric space X as following :
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Let us recall (see [12]) that a continuous t−norm is a binary operation
∗ : [0, 1] × [0, 1] → [0, 1] which satisfies the following conditions:(a)∗ is
commutative and associative; (b)∗ is continuous; (c)a ∗ 1 = a for all
a ∈ [0, 1]; (d)a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d (a, b, c, d ∈ [0, 1]).

Similarly, a continuous t−conorm is a binary operation ¦ : [0, 1] ×
[0, 1] → [0, 1] which satisfies the following conditions: (a)¦ is commuta-
tive and associative; (b)¦ is continuous; (c)a ¦ 0 = a for all a ∈ [0, 1];
(d)a ¦ b ≥ c ¦ d whenever a ≤ c and b ≤ d (a, b, c, d ∈ [0, 1]).

Definition 2.1. ([6])The 5−tuple (X, M, N, ∗, ¦) is said to be an
intuitionistic fuzzy metric space if X is an arbitrary set, ∗ is a continuous
t−norm, ¦ is a continuous t−conorm and M,N are fuzzy sets on X2 ×
(0,∞) satisfying the following conditions; for all x, y, z ∈ X, such that

(a)M(x, y, t) > 0,
(b)M(x, y, t) = 1 ⇐⇒ x = y,
(c)M(x, y, t) = M(y, x, t),
(d)M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s),
(e)M(x, y, ·) : (0,∞) → (0, 1] is continuous,
(f)N(x, y, t) > 0,
(g)N(x, y, t) = 0 ⇐⇒ x = y,
(h)N(x, y, t) = N(y, x, t),
(i)N(x, y, t) ¦N(y, z, s) ≥ N(x, z, t + s),
(j)N(x, y, ·) : (0,∞) → (0, 1] is continuous.
Note that (M, N) is called an intuitionistic fuzzy metric on X. The

functions M(x, y, t) and N(x, y, t) denote the degree of nearness and the
degree of non-nearness between x and y with respect to t, respectively.

Lemma 2.2. ([8])For all x, y ∈ X, M(x, y, ·) is nondecreasing on
(0,∞) and N(x, y, ·) is nonincreasing on (0,∞).

Definition 2.3. ([10]) Let X be an intuitionistic fuzzy metric space.
(a) {xn} is said to be convergent to a point x ∈ X if, for any 0 <

ε < 1 and t > 0, there exists n0 ∈ N such that M(xn, x, t) > 1 − ε,
N(xn, x, t) < ε for all n ≥ n0.

(b) {xn} is called a Cauchy sequence if for any 0 < ε < 1 and t > 0,
there exists n0 ∈ N such that M(xn, xm, t) > 1− ε, N(xn, xm, t) < ε for
all m,n ≥ n0.

(c) X is complete if every Cauchy sequence converges in X.

Lemma 2.4. ([9])Let X be an intuitionistic fuzzy metric space. If
there exists a number k ∈ (0, 1) such that for all x, y ∈ X and t > 0,

M(x, y, kt) ≥ M(x, y, t), N(x, y, kt) ≤ N(x, y, t),
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then x = y.

Definition 2.5. ([9])Let A,B be mappings from intuitionistic fuzzy
metric space X into itself. The mappings are said to be compatible of
type(α) if

lim
n→∞M(ABxn, BBxn, t) = 1 and lim

n→∞M(BAxn, AAxn, t) = 1,

lim
n→∞N(ABxn, BBxn, t) = 0 and lim

n→∞N(BAxn, AAxn, t) = 0

for all t > 0, whenever {xn} ⊂ X such that limn→∞Axn = limn→∞Bxn

= x for some x ∈ X.

Implicit relations on fuzzy metric spaces have been used in many
articles([1], [3] etc). Let Ψ = {φM , ψN}, I = [0, 1], ∗, ¦ be a continuous
t-norm, t-conorm and φM , ψN : I6 → R be continuous functions. Now,
we consider the following conditions:

(I)φM is decreasing and ψN is increasing in sixth variables.
(II)If, for some k ∈ (0, 1), we have

φM (u(kt), v(t), v(t), u(t), 1, u(
t

2
) ∗ v(

t

2
)) ≥ 1,

ψN (x(kt), y(t), y(t), x(t), 0, x(
t

2
) ¦ y(

t

2
)) ≤ 1

or φM (u(kt), v(t), u(t), v(t), u(
t

2
) ∗ v(

t

2
), 1) ≥ 1,

ψN (x(kt), y(t), x(t), y(t), x(
t

2
) ¦ y(

t

2
), 0) ≤ 1

for any fixed t > 0, any nondecreasing functions u, v : (0,∞) → I with
0 < u(t), v(t) ≤ 1, and any nonincreasing functions x, y : (0,∞) → I
with 0 < x(t), y(t) ≤ 1, then there exists h ∈ (0, 1) with u(ht) ≥ v(t) ∗
u(t), x(ht) ≤ y(t) ¦ x(t).

(III)If, for some k ∈ (0, 1), we have φM (u(kt), u(t), 1, 1, u(t), u(t)) ≥ 1
for any fixed t > 0 and any nondecreasing function u : (0,∞) → I, then
u(kt) ≥ u(t). Also, if, for some k ∈ (0, 1), we have ψN (x(kt), x(t), 0, 0, x(t),
x(t)) ≤ 1 for any fixed t > 0 and any nonincreasing function x : (0,∞) →
I, then x(kt) ≤ x(t).

Example 2.6. Let a ∗ b = min{a, b} and a ¦ b = max{a, b},

φM (u1, · · · , u6) =
u1

min{u2, · · · , u6} , ψN (x1, · · · , x6) =
x1

max{x2, · · · , x6} .
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Also, let t > 0, 0 < u(t), v(t), x(t), y(t) ≤ 1, k ∈ (0, 1
2) where u, v :

[0,∞) → I are nondecreasing functions and x, y : [0,∞) → I are nonin-
creasing functions. Now, suppose that

φM (u(kt), v(t), v(t), u(t), 1, u(
t

2
) ∗ v(

t

2
)) ≥ 1,

ψN (x(kt), y(t), y(t), x(t), 0, x(
t

2
) ¦ y(

t

2
)) ≤ 1,

then

φM (u(kt), v(t), v(t), u(t), 1, u(
t

2
) ∗ v(

t

2
)) =

u(kt)
min{u( t

2), v( t
2))

≥ 1,

ψN (x(kt), y(t), y(t), x(t), 0, x(
t

2
) ¦ y(

t

2
)) =

x(kt)
max{x( t

2), y( t
2))

≤ 1.

Thus, u(ht) ≥ v(t) ∗ u(t), x(ht) ≤ y(t) ¦ x(t). Suppose that t > 0 is
fixed, u : (0,∞) → I is a nondecreasing, x : (0,∞) → I nonincreasing
function and

φM (u(kt), u(t), 1, 1, u(t), u(t)) =
u(kt)
u(t)

≥ 1,

ψN (x(kt), x(t), 0, 0, x(t), x(t)) =
x(kt)
x(t)

≤ 1

for k ∈ (0, 1). Then we have u(kt) ≥ u(t) and x(kt) ≤ x(t). Hence
φM , ψN ∈ Ψ.

3. Main Results

Now, we will prove some common fixed point theorem for four map-
pings on complete intuitionistic fuzzy metric space as follows:

Theorem 3.1. Let (X,M,N, ∗, ¦) be a complete intuitionistic fuzzy
metric space with a∗ b = min{a, b}, a¦ b = max{a, b} for all a, b ∈ I and
A,B, S and T be mappings from X into itself satisfying the conditions:

(a)S(X) ⊆ B(X) and T (X) ⊆ A(X),
(b)one of the mappings A, B, S, T is continuous,

(c)A and S as well as B and T are compatible of type(α)
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(d)there exist k ∈ (0, 1) and φM , ψN ∈ Ψ such that

φM

(
M(Sx, Ty, kt),M(Ax, By, t),M(Sx,Ax, t),
M(Ty, By, t),M(Sx, By, t),M(Ty, Ax, t)

)
≥ 1,

ψN

(
N(Sx, Ty, kt), N(Ax,By, t), N(Sx, Ax, t),
N(Ty,By, t), N(Sx, By, t), N(Ty, Ax, t)

)
≤ 1,

for all x, y ∈ X and t > 0.
Then A,B, S and T have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point of X. From (a), we can construct
a sequence a sequence {yn} ⊂ X as follows: y2n+1 = Sx2n = Bx2n+1

and y2n+2 = Tx2n+1 = Ax2n+2 for all n = 0, 1, 2, · · · . Then, by (d), we
have, for any t > 0,

φM

(
M(Sx2n, Tx2n+1, kt),M(Ax2n, Bx2n+1, t),M(Sx2n, Ax2n, t),
M(Tx2n+1, Bx2n+1, t),M(Sx2n, Bx2n+1, t),M(Tx2n+1, Ax2n, t)

)
≥ 1,

ψN

(
N(Sx2n, Tx2n+1, kt), N(Ax2n, Bx2n+1, t), N(Sx2n, Ax2n, t),
N(Tx2n+1, Bx2n+1, t), N(Sx2n, Bx2n+1, t), N(Tx2n+1, Ax2n, t)

)
≤ 1,

and so

φM

(
M(Sx2n, Tx2n+1, kt),M(Tx2n−1, Sx2n, t),M(Sx2n, Tx2n−1, t),
M(Tx2n+1, Sx2n, t), 1,M(Tx2n+1, Sx2n, t

2 ) ∗M(Sx2n, Tx2n−1,
t
2 )

)
≥ 1,

ψN

(
N(Sx2n, Tx2n+1, kt), N(Tx2n−1, Sx2n, t), N(Sx2n, Tx2n−1, t),
N(Tx2n+1, Sx2n, t), 0, N(Tx2n+1, Sx2n, t

2 ) ¦N(Sx2n, Tx2n−1,
t
2 )

)
≤ 1,

By (II), we have

M(Sx2n, Tx2n+1, ht) ≥ M(Sx2n, Tx2n−1, t) ∗M(Sx2n, Tx2n+1, t),
N(Sx2n, Tx2n+1, ht) ≤ N(Sx2n, Tx2n−1, t) ¦N(Sx2n, Tx2n+1, t)

and so,

M(y2n+1, y2n+2, ht) ≥ M(y2n+1, y2n, t) ∗M(y2n+1, y2n+2, t),
N(y2n+1, y2n+2, ht) ≤ N(y2n+1, y2n, t) ¦N(y2n+1, y2n+2, t)

which implies that

M(y2n+1, y2n+2, ht) ≥ M(y2n+1, y2n, t), N(y2n+1, y2n+2, ht) ≤ N(y2n+1, y2n, t)

Also, by (II), we have

M(y2n+1, y2n, ht) ≥ M(y2n, y2n−1, t), N(y2n+1, y2n, ht) ≤ N(y2n, y2n−1, t).

Therefore, we have, for all m = 1, 2, · · · , and t > 0,

M(ym+1, ym+2, ht) ≥ M(ym, ym+1, t), N(ym+1, ym+2, ht) ≤ N(ym, ym+1, t).
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To prove that {yn} is a Cauchy sequence. First, we show that, for any
0 < λ < 1 and t > 0,

M(yn+1, yn+m+1, t) > 1− λ, N(yn+1, yn+m+1, t) < λ(1)

for all n ≥ n0 and m ∈ N . Inductively, by above equation, we have, as
n →∞

M(yn+1, yn+2, t) ≥ M(yn, yn+1,
t

h
≥ · · · · · · ≥ M(y1, y2,

t

hn
) → 1,

N(yn+1, yn+2, t) ≤ N(yn, yn+1,
t

h
≤ · · · · · · ≤ N(y1, y2,

t

hn
) → 0.

Hence, we can choose n0 ∈ N such that for all n ≥ n0,

M(yn+1, yn+2, t) > 1− λ, N(yn+1, yn+2, t) < λ.

Thus (3.1) is true for m = 1. Suppose that (3.1) is true for some m ∈ N .
Then, for m + 1 ∈ N , we have

M(yn+1, yn+m+2, t) ≥ M(yn+1, yn+m+1,
t

2
) ∗M(yn+m+1, yn+m+2,

t

2
) ≥ 1− λ,

N(yn+1, yn+m+2, t) ≤ N(yn+1, yn+m+1,
t

2
) ¦N(yn+m+1, yn+m+2,

t

2
) ≤ λ.

Hence (3.1) is true for m + 1 ∈ N . Therefore {yn} is Cauchy sequence
in X. Since X is complete, {yn} converges to a point x ∈ X. Since
{Ax2n+2}, {Bx2n+1}, {Sx2n} and {Tx2n+1} ⊂ {yn}, we have

lim
n→∞Ax2n+2 = lim

n→∞Bx2n+1 = lim
n→∞Sx2n = lim

n→∞Tx2n+1 = x.

Now, suppose that A is continuous. Then limn→∞ASx2n = Ax. Also,
since A, S are compatible of type(α), limn→∞ SAx2n = Ax. Using (d),
we have, for any t > 0,

φM

(
M(SAx2n, Tx2n+1, kt),M(AAx2n, Bx2n+1, t),M(SAx2n, AAx2n, t),
M(Tx2n+1, Bx2n+1, t),M(SAx2n, Bx2n+1, t),M(Tx2n+1, AAx2n, t)

)
≥ 1,

ψN

(
N(SAx2n, Tx2n+1, kt), N(AAx2n, Bx2n+1, t), N(SAx2n, AAx2n, t),
N(Tx2n+1, Bx2n+1, t), N(SAx2n, Bx2n+1, t), N(Tx2n+1, AAx2n, t)

)
≤ 1

and then letting n →∞, φM , ψN are continuous, we have

φM

(
M(Ax, x, kt),M(Ax, x, t),M(Ax, x, t),
M(x, x, t),M(Ax, x, t),M(x, x, t)

)
≥ 1,

ψN

(
N(Ax, x, kt), N(Ax, x, t), N(Ax, x, t),
N(x, x, t), N(Ax, x, t), N(x, x, t)

)
≤ 1.

Therefore, by (III), we have

M(Ax, x, kt) ≥ M(Ax, x, t), N(Ax, x, kt) ≤ N(Ax, x, t).
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Hence Ax = x from Lemma 2.4. Also, we have, by (d),

φM

(
M(Sx, Tx2n+1, kt),M(Ax,Bx2n+1, t),M(Ax, Sx, t),
M(Tx2n+1, Bx2n+1, t),M(Sx, Bx2n+1, t),M(Tx2n+1, Ax, t)

)
≥ 1,

ψN

(
N(Sx, Tx2n+1, kt), N(Ax,Bx2n+1, t), N(Ax, Sx, t),
N(Tx2n+1, Bx2n+1, t), N(Sx, Bx2n+1, t), N(Tx2n+1, Ax, t)

)
≤ 1

and, let n →∞, we get

φM

(
M(Sx, x, kt), 1,M(x, Sx, t),
1,M(Sx, x, t), 1

)
≥ 1,

ψN

(
N(Sx, x, kt), 0, N(x, Sx, t),
0, N(Sx, x, t), 0

)
≤ 1.

On the other hand, since

M(Sx, x, t) ≥ M(Sx, x,
t

2
) = M(Sx, x,

t

2
) ∗ 1,

N(Sx, x, t) ≤ N(Sx, x,
t

2
) = N(Sx, x,

t

2
) ¦ 0,

φM is nonincreasing and ψN is nondecreasing in the fifth variable, we
have, for any t > 0,

φM

(
M(Sx, x, kt), 1,M(x, Sx, t),
1,M(Sx, x, t) ∗ 1, 1

)
≥ 1,

ψN

(
N(Sx, x, kt), 0, N(x, Sx, t),
0, N(Sx, x, t) ¦ 0, 0

)
≤ 1

which implies that Sx = x. Since S(X) ⊆ B(X), there exists a point
y ∈ X such that By = x. Using (d), we have

φM

(
M(Sx, Ty, kt),M(Ax,By, t),M(Sx, Ax, t),
M(Ty, By, t),M(Sx,By, t),M(Ty,Ax, t)

)

=φM

(
M(x, Ty, kt), 1, 1,
M(Ty, x, t), 1,M(Ty, x, t)

)
≥ 1,

ψN

(
N(Sx, Ty, kt), N(Ax,By, t), N(Sx, Ax, t),
N(Ty, By, t), N(Sx, By, t), N(Ty,Ax, t)

)

=ψN

(
N(x, Ty, kt), 0, 0,
N(Ty, x, t), 0, N(Ty, x, t)

)
≤ 1

which implies that x = Ty. Since By = Ty = x and B, T are compatible
of type(α), we have TTy = BTy. Hence Tx = TTy = BTy = Bx.



670 Jong Seo Park

Therefore, from (d), we have, for any t > 0,

φM

(
M(Sx, Tx, kt),M(Ax,Bx, t),M(Sx, Ax, t),
M(Tx,Bx, t),M(Sx, Bx, t), M(Tx,Ax, t)

)

=φM

(
M(x, Tx, kt),M(x, Tx, t), 1,
1,M(x, Tx, t), 1,M(x, Tx, t)

)
≥ 1,

ψN

(
N(Sx, Tx, kt), N(Ax,Bx, t), N(Sx,Ax, t),
N(Tx, Bx, t), N(Sx, Bx, t), N(Tx,Ax, t)

)

=ψN

(
N(x, Tx, kt), N(x, Tx, t), 0,
0, N(x, Tx, t), 0, N(x, Tx, t)

)
≤ 1.

From (III), we have

M(x, Tx, kt) ≥ M(x, Tx, t), N(x, Tx, kt) ≤ N(x, Tx, t).

Therefore, we have x = Tx = Bx. Hence X is a common fixed point of
A,B, S and T . The same result holds if we assume that B is continuous
insead of A.

Now, suppose that S is continuous. Then limn→∞ SAx2n = Sx.
Since A,S are compatible of type(α), limn→∞ASx2n = Sx. Using (d),
we have for any t > 0,

φM

(
M(SSx2n, Tx2n+1, kt),M(ASx2n, Bx2n+1, t),M(SSx2n, ASx2n, t),
M(Tx2n+1, Bx2n+1, t),M(SSx2n, Bx2n+1, t),M(Tx2n+1, ASx2n, t)

)
≥ 1,

ψN

(
N(SSx2n, Tx2n+1, kt), N(ASx2n, Bx2n+1, t), N(SSx2n, ASx2n, t),
N(Tx2n+1, Bx2n+1, t), N(SSx2n, Bx2n+1, t), N(Tx2n+1, ASx2n, t)

)
≤ 1,

and then by n →∞, since φM , ψN ∈ Ψ are continuous, we have

φM

(
M(Sx, x, kt),M(Sx, x, t), 1,
1,M(Sx, x, t),M(Sx, x, t)

)
≥ 1,

ψN

(
N(Sx, x, kt), N(Sx, x, t), 0,
0, N(Sx, x, t), N(Sx, x, t)

)
≤ 1.

Thus, we have, from (III),

M(Sx, x, kt) ≥ M(Sx, x, t), N(Sx, x, kt) ≤ N(Sx, x, t).

Hence Sx = x. Since S(X) ⊆ B(X), there exists a point z ∈ X such
that Bz = x. Using (d), we have

φM

(
M(SSx2n, T z, kt),M(ASx2n, Bz, t),M(SSx2n, ASx2n, t),
M(Tz,Bz, t),M(SSx2n, Bz, t),M(Tz, ASx2n, t)

)
≥ 1,

ψN

(
N(SSx2n, T z, kt), N(ASx2n, Bz, t), N(SSx2n, ASx2n, t),
N(Tz, Bz, t), N(SSx2n, Bz, t), N(Tz,ASx2n, t)

)
≤ 1,
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letting n →∞, we get

φM

(
M(x, Tz, kt), 1, 1,
M(x, Tz, t), 1, M(x, Tz, t)

)
≥ 1,

ψN

(
N(x, Tz, kt), 0, 0,
N(x, Tz, t), 0, N(x, Tz, t)

)
≤ 1

which implies that x = Tz. Since Bz = Tz = x and B, T are compatible
of type(α), we have TBz = BBz and so Tx = TBz = BBz = Bx. Thus,
we have

φM

(
M(Sx2n, Tx, kt),M(Ax2n, Bx, t),M(Sx2n, Ax2n, t),
M(Tx, Bx, t),M(Sx2n, Bx, t), M(Tx,Ax2n, t)

)
≥ 1,

ψN

(
N(Sx2n, Tx, kt), N(Ax2n, Bx, t), N(Sx2n, Ax2n, t),
N(Tx,Bx, t), N(Sx2n, Bx, t), N(Tx,Ax2n, t)

)
≤ 1,

letting n →∞,

φM

(
M(x, Tx, kt),M(x, Tx, t), 1,
1,M(x, Tx, t),M(x, Tx, t)

)
≥ 1,

ψN

(
N(x, Tx, kt), N(x, Tx, t), 0,
0, N(x, Tx, t), N(x, Tx, t)

)
≤ 1.

Thus, x = Tx = Bx. Since T (X) ⊆ A(X), there exists w ∈ X such that
Aw = x. Thus, from (d),

φM

(
M(Sw, Tx, kt),M(Aw, Bx, t),M(Sw, Aw, t),
M(Tx, Bx, t), M(Sw, Bx, t),M(Tx,Aw, t)

)

=φM

(
M(Sw, x, kt), 1,M(Sw, x, t),
1,M(Sw, x, t), 1

)
≥ 1,

ψN

(
N(Sw, Tx, kt), N(Aw, Bx, t), N(Sw,Aw, t),
N(Tx,Bx, t), N(Sw, Bx, t), N(Tx, Aw, t)

)

=ψN

(
N(Sw, x, kt), 0, N(Sw, x, t),
0, N(Sw, x, t), 0

)
≤ 1.

Hence we have x = Sw = Aw. Also, since A,S are compatible of
type(α), x = Sx = SAw = AAw = Ax. Hence x is a common fixed
point of A,B, S and T . The same result holds if we assume that T is
continuous instead of S.
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Finally, suppose that A,B, S and T have another common fixed point
u. Then we have, for any t > 0,

φM

(
M(Sx, Tu, kt),M(Ax,Bu, t),M(Sx,Ax, t),
M(Tu,Bu, t),M(Sx, Bu, t),M(Tu,Ax, t)

)

=φM

(
M(x, u, kt), M(x, u, t), 1,
1,M(x, u, t), M(x, u, t)

)
≥ 1,

ψN

(
N(Sx, Tu, kt), N(Ax,Bu, t), N(Sx,Ax, t),
N(Tu, Bu, t), N(Sx, Bu, t), N(Tu,Ax, t)

)

=ψN

(
N(x, u, kt), N(x, u, t), 0,
0, N(x, u, t), N(x, u, t)

)
≤ 1.

Therefore, from (III), x = u. This completes the proof.
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