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DEDUCTIVE SYSTEMS IN COMMUTATIVE
PRE-LOGICS

Young Hie Kima and Sun Shin Ahnb,∗

Abstract. The notions of commutative pre-logics and terminal
sections are introduced. Characterizations of a commutative pre-
logic are provided. Properties of deductive systems in pre-logics
which are upper semilattices are considered.

1. Introduction

I. Chajda and R. Halas [1] introduced the concept of a pre-logic which
is an algebra weaker than a Hilbert algebra (an algebraic counterpart of
intuitionistic logic) but strong enough to have deductive systems. They
also studied algebraic properties of pre-logics and of lattices of their
deductive systems.

In this paper, we introduced the notion of commutative pre-logics
and terminal sections, and give some characterizations of commutative
pre-logics in terms of lattices order relations, and terminal sections. We
also study properties of deductive systems in pre-logics which are upper
semilattices.

2. Preliminaries

We recall some definitions and results (see [1]).

Definition 2.1. By a pre-logic, we mean a triple (X; ·, 1) where X
is a non-empty set, · is a binary operation on X and 1 ∈ X is a nullary
operation such that the following identities hold:
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(P1) (∀x ∈ X) (x · x = 1),
(P2) (∀x ∈ X) (1 · x = x),
(P3) (∀x ∈ X) (x · (y · z) = (x · y) · (x · z)),
(P4) (∀x, y, z ∈ X) (x · (y · z) = y · (x · z)).

Lemma 2.2. Let (X; ·, 1) be a pre-logic. Then the following hold:
(a) (∀x ∈ X) (x · 1 = 1);
(b) (∀x, y ∈ X) (x · (y · x) = 1);
(c) a binary operation ≤ on A defined by

(∀x, y ∈ X) (x ≤ y if and only if x · y = 1)

is a quasiorder on X (i.e., a reflexive and transitive binary relation
on X);

(d) 1 ≤ x for all x ∈ X implies x = 1.

Remark 2.3. The quasiorder ≤ of Lemma 2(c) is called the induced
quasiorder of a pre-logic X.

Lemma 2.4. Let ≤ be the induced quasiorder of a pre-logic X =
(X; ·.1) and x, y, z ∈ X. If x ≤ y, then z · x ≤ z · y and y · z ≤ x · z.

Definition 2.5. Let X = (X; ·, 1) be a pre-logic. A non-empty
subset D of X is called a deductive system of X if the following conditions
hold:
(d1) 1 ∈ D;
(d2) if x ∈ D and x · y ∈ D, then y ∈ D.

Lemma 2.6. Let X = (X; ·, 1) be a pre-logic and ≤ its induced quasi
order. The the following hold:
(a) (∀x, y ∈ X) (x · ((x · y) · y) = 1),
(b) (∀x, y, z ∈ X) ((y · z) · ((x · y) · (x · z)) = 1),
(c) if D is a deductive system of X and a ∈ D, a ≤ b, then b ∈ D.

Denote by D(X) the set of all deductive systems of X. It is clear that
D(X) is non-empty.

Lemma 2.7. Let (X; ∗, 1) be a pre-logic and Di ∈ D(X) for each i ∈ I.
Then D ∈ D(X) for D = ∩{Di|i ∈ I}.

It implies that the set D(X) forms a closure operator on the power set
of X. For every subset A ⊆ X there exists the least deductive system
on X containing A. Denote it by 〈A〉 and call the deductive systems
generated by A. If A = {a}, we will denote 〈{a}〉 briefly by 〈a〉 and call
it the principal deductive system. Hence, if A, B are subsets of X, then
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(1) A ⊆ 〈A〉,
(2) A ⊆ B implies 〈A〉 ⊆ 〈B〉,
(3) 〈〈A〉〉 = 〈A〉.

If A = {x1, · · · , xn}, then we denoted by 〈x1, · · · , xn〉 = 〈{x1, · · · , xn}〉.
Theorem 2.8. The lattice D(X) of all deductive systems of a pre-
logic X is an algebraic lattice whose compact elements are just finitely
generated deductive systems. Let A ⊆ X. If A = ∅, then 〈∅〉 = {1}; if
A 6= ∅, then
〈A〉 = {a ∈ X|x1 · (x2 · (· · · (xn · a) · · · )) = 1 for some x1, x2, · · ·xn ∈ A}.

Definition 2.9 ([2]). A dual BCK-algebra is an algebra (X; ∗, 1) of
type (2,0) satisfying (P1), lemma 2.2(a), and the following axioms:
(dBCK1) x ∗ y = y ∗ x = 1 ⇒ x = y,
(dBCK2) (x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z)) = 1,
(dBCK3) x ∗ ((x ∗ y) ∗ y) = 1.

Proposition 2.10 ([2]). Let (X; ∗, 0) be a dual BCK-algebra and
x, y, z ∈ X. Then
(1) x ∗ (y ∗ z) = y ∗ (x ∗ z),
(2) 1 ∗ x = x.

3. Commutative pre-logics

Proposition 3.1. Let X be a pre-logic and let x, y, z ∈ X. If z ≤ x · y
and z ≤ x, then z ≤ y.

Proof. Assume that z ≤ x · y and z ≤ x for any x, y, z ∈ X. Then
x · y ∈ 〈z〉 and x ∈ 〈z〉. Since 〈z〉 is a deductive system, it follows from
(d2) that y ∈ 〈z〉. Hence z ≤ y.

We now give an equivalent condition of a deductive system.

Theorem 3.2. Let D be a non-empty subset of a pre-logic X. Then D
is a deductive system of X if and only if for any x and y in D, x ≤ y · z
implies z ∈ D.

Proof. Let D be a deductive system of X and let x, y ∈ D. If x ≤ y · z,
then x · (y · z) = 1. Using (d2), we have y · z ∈ D. Using (d2) again,
z ∈ D.

Conversely, assume that x ≤ y · z implies z ∈ D for all x, y ∈ D and
z ∈ X. Since D 6= ∅, we may assume x ∈ D. We note from Lemma
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Table 1. · -operation

· 1 a b c d

1 1 a b c d
a 1 1 b c d
b 1 1 1 c d
c 1 1 1 1 d
d 1 1 b c 1

2.2(a) that x ≤ x · 1 so that 1 ∈ D by assumption. Let x ∈ D and
x · y ∈ D. Combining Lemma 2.6(a) and assumption, we get y ∈ D.
Hence D is a deductive system of X. This completes the proof.

Theorem 3.3. For any deductive system D of a pre-logic X and any
a ∈ X, the set Da := {x ∈ X|a · x ∈ D} is the least deductive system of
X containing D and a.

Proof. It follows from Lemma 2.2(a) that a · 1 = 1 for any a ∈ X. Hence
1 ∈ Da. Using (P1), we have a ·a = 1 ∈ D for any a ∈ D and so a ∈ Da.
Let x ∈ Da and x · y ∈ Da. Then a · x ∈ D and a · (x · y) ∈ D. Since
a · (x · y) = (a · x) · (a · y) ∈ D and a · x ∈ D, we obtain a · y ∈ D.
Hence y ∈ Da. Thus Da is a deductive system. Let x ∈ D. Since
x · (a · x) = 1 ∈ D and D is a deductive system of X, we get a · x ∈ D.
Hence x ∈ Da. Let H be any deductive system of X containing D and
a. Let x ∈ Da. Then a · x ∈ D ⊆ H. Since a ∈ H and H is a deductive
system of X, we have x ∈ H. Therefore Da ⊆ H. Thus Da is the least
deductive system of X containing D and a.

For any x, y in a pre-logic X , we define x∨ y as (y ·x) ·x. Under this
definition, using Lemma 2.2(a) and (P4), we have

x · (x ∨ y) =x · ((y · x) · x)

=(y · x) · (x · x)

=(y · x) · 1 = 1,

i.e., x ≤ x ∨ y. From Lemma 2.6(a), it follows that y ≤ x ∨ y. Hence
x ∨ y is an upper bound of x and y. As easily seen, we have
(c1) x ∨ x = x and x ∨ 1 = 1 ∨ x = 1.

Example 3.4. Let X := {1, a, b, c, d} be a pre-logic with the · -operation
given by Table 1. Then a ∨ d = a 6= 1 = d ∨ a and a is the least upper
bound of a and d. Hence, in general, x∨ y 6= y ∨x and x∨ y may not be
the least upper bound of x and y.
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Table 2. · -operation

· 1 a b c

1 1 a b c
a 1 1 b c
b 1 a 1 c
c 1 a b 1

Definition 3.5. A pre-logic X is said to be commutative if it satisfies
the following identity
(C) (y · x) · x = (x · y) · y, i.e., x ∨ y = y ∨ x

for all x, y ∈ X.

Example 3.6. Let X := {1, a, b, c} be a set with the · -operation given
by Table 2. It is easy to show that (X; ·, 1) is a commutative pre-logic.

Theorem 3.7. If X is a commutative pre-logic X, then it is a semilattice
with respect to ∨.
Proof. Assume that X is a commutative pre-logic. As already seen,
x ∨ y is an upper bound of x and y. We shall show that x ∨ y is the
least upper bound of x and y, To do this, suppose that x ≤ z and
y ≤ z. Then x · z = y · z = 1. Hence by commutative we have (i):
z = 1·z = (x·z)·z = (z·x)·x and (ii): z = 1·z = (y·z)·z = (z·y)·y. Using
(i) and (ii), we have (iii): z = (z·x)·x = (((z ·y)·y)·x)·x. Set u = (z ·y)·y.
Then z = (u·x)·x follows from (iii). Since y ≤ (z·y)·y = u, by Lemma 2.4
we have u ·x ≤ y ·x. Using Lemma 2.4, we get (y ·x) ·x ≤ (u ·x) ·x = z.
Hence we get x ∨ y ≤ z, which shows that x ∨ y is the least upper
bound of x and y. Therefore we have the associative law with respect
to ∨. Consequently, X is a semilattice with respect to ∨. The proof is
complete.

The converse of Theorem 3.7 is not true as seen in the following
example.

Example 3.8. Let X := {1, a, b, c} be a set with the · -operation given
by Table 3. It is easy to check that X is a pre-logic with semilattice with

respect to ∨. Since a ∨ b = a 6= 1 = b ∨ a, X is not commutative.

Theorem 3.9. Let X be a pre-logic. If X is commutative, then the
following properties hold:
(c2) y · (x ∨ z) = (z · x) · (y · x).
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Table 3. · -operation

· 1 a b c

1 1 a b c
a 1 1 b c
b 1 1 1 c
c 1 1 b 1

(c3) x ≤ y implies x ∨ y = y.
(c4) z ≤ x and x · z ≤ y · z imply y ≤ x.
(c5) y ∨ x = x ∨ (y ∨ x), i.e., (x · y) · y = (((x · y) · y) · x) · x. for all

x, y ∈ X.

Proof. (c2) Using (P4), we have y · (x∨z) = y · ((z ·x) ·x) = (z ·x) · (y ·x).
(c3) If x ≤ y, then y = 1 · y = (x · y) · y = y ∨ x. Hence by the
commutativity, x ≤ y implies x ∨ y = y.
(c4) Assume that X is commutative. If z ≤ x and x · z ≤ y · z, then
z · x = 1 and (x · z) · (y · z) = 1. Using (P2), (P4) and commutative, we
have

y · x =y · (1 · x)

=y · ((z · x) · x)

=y · ((x · z) · z)

=(x · z) · (y · z)
=1

which implies that y ≤ x.
(c5) Let X be a commutative pre-logic and let x, y ∈ X. We recall that
x ≤ (x · y) · y means x ≤ y ∨ x. Then (c3) yields x ∨ (y ∨ x) = y ∨ x,
which is (c5). This completes the proof.

Proposition 3.10. If (X; ·, 1) is a commutative pre-logic, then for all
x, y ∈ X, x · y = 1 and y · x = 1 ⇒ x = y.

Proof. Suppose that x · y = 1 and y · x = 1 for all x, y ∈ X. Then
x = 1 · x = (y · x) · x = (x · y) · y = y.

Theorem 3.11. If (X; ·, 1) is a commutative pre-logic, then (X; ·, 1) is
a dual BCK-algebra.

Proof. Proposition 3.10 yields (dBCK1). Now let x, y, z ∈ X. Applying
(P4) and (C), we have

(y · z) · (x · z) = x · [(y · z) · z] = x · [(z · y) · y] = (z · y) · (x · y).
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Table 4. · -operation

· 1 a b c

1 1 a b c
a 1 1 a a
b 1 1 1 a
c 1 1 a 1

Hence
(x · y) · [(y · z) · (x · z)] = (x · y) · [(z · y) · (x · y)].

Since x · (y · x) = 1 for any x ∈ X, we have (x · y) · [(y · z) · (x · z)] = 1.
Therefore (dBCK2) holds. Moreover, by (P1) and (P4), x · ((x · y) · y) =
(x · y) · (x · y) = 1. From this we have (dBCK3). Thus X is a dual
BCK-algebra.

The converse of Theorem 3.11 is not true as seen in the following
example.

Example 3.12. Let X := {1, a, b, c} be a set with the · -operation given
by Table 4. It is easy to check that X is a dual BCK-algebra. Since

(a · a) · (a · b) = a 6= 1 = a · (a · b), X is not a pre-logic.

For an element a of a pre-logic X, we consider the set

{x ∈ X|a ≤ x},
denoted by H(a), which is called the terminal section of an element
a. Since 1, a ∈ H(a), H(a) is not empty. Using this notation, we can
characterize a commutative pre-logic.

Theorem 3.13. If a pre-logic X is commutative, then it satisfies the
identity:
(c6) H(a) ∩H(b) = H(a ∨ b)
for all a, b ∈ X.

Proof. Let X be a commutative pre-logic and let a, b ∈ X. If x ∈
H(a)∩H(b), then a ≤ x and b ≤ x. Hence a∨ b ≤ x, which implies that
x ∈ H(a ∨ b). Hence H(a) ∩ H(b) ⊆ H(a ∨ b). Now if x ∈ H(a ∨ b),
then a ∨ b ≤ x. Since a ∨ b is an upper bound of a and b, it follows that
a ≤ x and b ≤ x, i.e., x ∈ H(a) and x ∈ H(b). Hence x ∈ H(a) ∩H(b).
Therefore (c6) holds.

Proposition 3.14. Let X be a pre-logic and x, y ∈ X. Then 〈x ∨ y〉 ⊆
〈x〉 ∩ 〈y〉 with equality in a commutative pre-logic.
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Proof. The inclusion 〈x ∨ y〉 ⊆ 〈x〉 ∩ 〈y〉 is trivial. Conversely, let X be
a commutative pre-logic and a ∈ 〈x〉 ∩ 〈y〉. Then 〈x〉 = {b ∈ X|x ≤ b}
and 〈y〉 = {b ∈ X|y ≤ b}, whence x ∨ y ≤ a giving a ∈ 〈x ∨ y〉.
Definition 3.15. A deductive system D is said to be maximal if D 6= X
and D ⊆ D1 ⊆ X implies D = D1 or D1 = X for D1 ∈ D(X).

Theorem 3.16. Let D be a maximal deductive system of a pre-logic
X. Then for any x, y ∈ X, we have x · y ∈ D or y · x ∈ D.

Proof. Let x, y ∈ X. If x ∈ D, then x ≤ y ·x implies y ·x ∈ D. Similarly,
if y ∈ D, then x · y ∈ D, since y ≤ x · y. Finally assume that x /∈ D and
y /∈ D and x · y /∈ D. Then Dx·y = {z ∈ X|(x · y) · z ∈ D} is a deductive
system containing D and x · y. Since D is maximal, Dx·y = X. Hence
(x · y) · (y · x) ∈ D, which implies from (P4) that y · ((x · y) · x) ∈ D.
Using (P2) and Lemma 2.2(b) and (P3), we have

y · x =1 · (y · x)

=(y · (x · y)) · (y · x)

=y · ((x · y) · x) ∈ D.

which completes the proof.
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