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DEDUCTIVE SYSTEMS IN COMMUTATIVE
PRE-LOGICS

YouNGg HIE KiM® AND SUN SHIN AHND*

Abstract. The notions of commutative pre-logics and terminal
sections are introduced. Characterizations of a commutative pre-
logic are provided. Properties of deductive systems in pre-logics
which are upper semilattices are considered.

1. Introduction

I. Chajda and R. Halas [1] introduced the concept of a pre-logic which
is an algebra weaker than a Hilbert algebra (an algebraic counterpart of
intuitionistic logic) but strong enough to have deductive systems. They
also studied algebraic properties of pre-logics and of lattices of their
deductive systems.

In this paper, we introduced the notion of commutative pre-logics
and terminal sections, and give some characterizations of commutative
pre-logics in terms of lattices order relations, and terminal sections. We
also study properties of deductive systems in pre-logics which are upper
semilattices.

2. Preliminaries

We recall some definitions and results (see [1]).

DEFINITION 2.1. By a pre-logic, we mean a triple (X;-, 1) where X
is a non-empty set, - is a binary operation on X and 1 € X is a nullary
operation such that the following identities hold:
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Ve e X) (z-z=1),
Ve X) (1 -z=uxa),
(VzeX) (z-(y-2)=(z-y) (z-2)),
LEMMA 2.2. Let (X;-,1) be a pre-logic. Then the following hold:
(a) (Ve e X) (z-1=1);
(b) (Vz,y € X) (2 (y-z) =1);
(c) a binary operation < on A defined by

(Vz,y € X)(z <y ifand only if x -y = 1)

(P1)
(P2)
(P3)
(P4)

is a quasiorder on X (i.e., a reflexive and transitive binary relation
on X);
(d) 1 <z for all x € X implies x = 1.

REMARK 2.3. The quasiorder < of Lemma 2(c) is called the induced
quasiorder of a pre-logic X.

LEMMA 2.4. Let < be the induced quasiorder of a pre-logic X =
(X;-1)and v,y,z€ X. Ife <y, thenz-z<z-yandy-z<uz-z.

DEFINITION 2.5. Let X = (X;-,1) be a pre-logic. A non-empty
subset D of X is called a deductive system of X if the following conditions
hold:

(d1) 1 € D;
(d2) ifz € Dand x -y € D, then y € D.

LEMMA 2.6. Let X = (X;-, 1) be a pre-logic and < its induced quasi
order. The the following hold:

(a) (Vo,y € X) (z-((z-y)-y) =1),
(b) (Vo,y,z2€ X) ((y-2)-(z-y) - (z-2)) =1),
(c) if D is a deductive system of X and a € D, a < b, then b € D.

Denote by D(X) the set of all deductive systems of X. It is clear that
D(X) is non-empty.

Lemma 2.7. Let (X;%,1) be a pre-logic and D; € D(X) for each i € I.
Then D € D(X) for D = N{D;li € I}.

It implies that the set D(X) forms a closure operator on the power set
of X. For every subset A C X there exists the least deductive system
on X containing A. Denote it by (A) and call the deductive systems

generated by A. If A = {a}, we will denote ({a}) briefly by (a) and call
it the principal deductive system. Hence, if A, B are subsets of X, then
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(1) AC(4),

(2) A C B implies (A) C (B),
(3) ({(4)) = (A).

If A={x1, - - ,zn}, then we denoted by (xy, -+ ,x,) = {1, -+ ,zn}).

Theorem 2.8. The lattice D(X) of all deductive systems of a pre-
logic X is an algebraic lattice whose compact elements are just finitely
generated deductive systems. Let A C X. If A =), then () = {1}; if
A # 1, then

(4) = {a € X|ar (@2 (- (wn-a)--)) = 1 for some @1, 23,z € A},

Definition 2.9 ([2]). A dual BCK-algebra is an algebra (X;*,1) of
type (2,0) satisfying (P1), lemma 2.2(a), and the following axioms:
(dBCK1) zxy=y*xx=1= 2=y,

(dBCK2) (zxy)* ((y*2) * (xx2)) =1,

(dBCK3) z * ((z xy) xy) = 1.

Proposition 2.10 ([2]). Let (X;%,0) be a dual BCK-algebra and
xz,y,z € X. Then

(1) wx (y*2) =y*(rxz),
(2) 1xx ==

3. Commutative pre-logics

Proposition 3.1. Let X be a pre-logic and let x,y,z € X. If z<x -y
and z < x, then z < y.

Proof. Assume that z < z -y and z < z for any z,y,z € X. Then
x-y € (z) and x € (z). Since (z) is a deductive system, it follows from
(d2) that y € (2). Hence z < y. O

We now give an equivalent condition of a deductive system.

Theorem 3.2. Let D be a non-empty subset of a pre-logic X. Then D
is a deductive system of X if and only if for any x andy in D, x <y -z
implies z € D.

Proof. Let D be a deductive system of X and let z,y € D. If x <y - 2,
then x - (y - z) = 1. Using (d2), we have y - z € D. Using (d2) again,
z€D.

Conversely, assume that x < y - z implies z € D for all x,y € D and
z € X. Since D # (), we may assume z € D. We note from Lemma
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TABLE 1. - -operation

. ‘ 1 a b ¢ d
111 a b ¢ d
all 1 b ¢ d
b1 1 1 ¢ d
cl 1 1 1 1 d
dl1 1 b ¢ 1

2.2(a) that z < z -1 so that 1 € D by assumption. Let x € D and
x -y € D. Combining Lemma 2.6(a) and assumption, we get y € D.
Hence D is a deductive system of X. This completes the proof. O

Theorem 3.3. For any deductive system D of a pre-logic X and any
a € X, theset D, :={x € X|a-x € D} is the least deductive system of
X containing D and a.

Proof. 1t follows from Lemma 2.2(a) that a-1 =1 for any a € X. Hence
1 € D,. Using (P1), we have a-a =1 € D for any a € D and so a € D,.
Let x € Dy and -y € D,. Thena-xz € D and a- (x-y) € D. Since
a-(z-y) = (a-z)-(a-y) € Dand a-z € D, we obtain a-y € D.
Hence y € D,. Thus D, is a deductive system. Let x € D. Since
z-(a-x)=1€ D and D is a deductive system of X, we get a-x € D.
Hence x € D,. Let H be any deductive system of X containing D and
a. Let x € D,. Thena-xz € D C H. Since a € H and H is a deductive
system of X, we have x € H. Therefore D, C H. Thus D, is the least
deductive system of X containing D and a. O

For any x,y in a pre-logic X , we define zVy as (y-x)-z. Under this
definition, using Lemma 2.2(a) and (P4), we have

z-(zVvy)=z-((y ) x)
=(y-z)- (v )
=(y-x)-1=1,
ie, z <z Vy. From Lemma 2.6(a), it follows that y < x Vy. Hence

x V y is an upper bound of x and y. As easily seen, we have
(c1) rVz=zandzV1i=1vze=1.

Example 3.4. Let X := {1,a,b, c,d} be a pre-logic with the - -operation
given by Table 1. Then aVd=a # 1= dV a and a is the least upper
bound of a and d. Hence, in general, xVy # y Vx and =V y may not be
the least upper bound of z and y.
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TABLE 2. - -operation

. ‘ 1 a b c
111 a b ¢
all 1 b ¢
bl 1 a 1 ¢
c|l 1l a b 1

Definition 3.5. A pre-logic X is said to be commutative if it satisfies
the following identity

©€) y-a)z=(x-y)yie,zVy=yVa
for all z,y € X.

Example 3.6. Let X :={1,a,b,c} be a set with the - -operation given
by Table 2. It is easy to show that (X;-,1) is a commutative pre-logic.

Theorem 3.7. If X is a commutative pre-logic X, then it is a semilattice
with respect to V.

Proof. Assume that X is a commutative pre-logic. As already seen,
x V y is an upper bound of x and y. We shall show that x V y is the
least upper bound of x and y, To do this, suppose that x < z and
y < z. Then z-z = y-2z = 1. Hence by commutative we have (i):
z=1z=(x2)2z=(zz)zand (ii): z=12= (y-2)-z = (2-y)-y. Using
(i) and (ii), we have (iii): z = (z-2z)-z = (((z-y)-y)-x)-z. Set u = (2-y)-y.
Then z = (u-z)-z follows from (iii). Since y < (z-y)-y = u, by Lemma 2.4
we have u-x < y-z. Using Lemma 2.4, we get (y-z) -2z < (u-2) -2 = z.
Hence we get =V y < 2z, which shows that = V y is the least upper
bound of z and y. Therefore we have the associative law with respect
to V. Consequently, X is a semilattice with respect to V. The proof is
complete. ]

The converse of Theorem 3.7 is not true as seen in the following
example.

Example 3.8. Let X :={1,a,b,c} be a set with the - -operation given
by Table 3. It is easy to check that X is a pre-logic with semilattice with

respect to V. Since a Vb=a # 1 =0V a, X is not commutative.

Theorem 3.9. Let X be a pre-logic. If X is commutative, then the
following properties hold:

(c2) y-(xVz)=(z-2) (y-2).
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TABLE 3. - -operation

o

QO Qe
el el
—_ ==
S =SS o
_— 0 O O

(c3) * <y impliesx Vy =y.

(ch) z<zandx-z<y-zimplyy <.

(c5) yVe=xV(yVa), le, (x-y)-y=(((x-y)- y)- x) -z for all
z,y € X.

Proof. (cg) Using (P4), we have y-(xVz) =
(c3) f 2 <y, theny =1-y = (x-y)
commutativity, x <y implies x Vy = v.
(c4) Assume that X is commutative. If 2 < z and z -2z < y - z, then
z-x=1and (x-2)-(y-2) =1. Using (P2), (P4) and commutative, we
have

((z-2)-2) = (z-2)- (y- ).

y. .x
-y = y VvV a. Hence by the

y-xz=y- (1 )
=y-((z- 7))
=y-((z-2)2)
=(x-2)-(y-2)

which implies that y < x.

(c5) Let X be a commutative pre-logic and let x,y € X. We recall that
x < (x-y)-ymeans z < yVax. Then (c3) yields zV (y V) =y Vz,
which is (¢5). This completes the proof. O
Proposition 3.10. If (X;-,1) is a commutative pre-logic, then for all
zyeX,z-y=landy-x=1=2x=y.

Proof. Suppose that -y = 1 and y-x = 1 for all z,y € X. Then
r=1-z=(y z)-z=(xy) y=y O
Theorem 3.11. If (X;-, 1) is a commutative pre-logic, then (X;- 1) is
a dual BCK-algebra.

Proof. Proposition 3.10 yields (dBCK1). Now let x,y,2z € X. Applying
(P4) and (C), we have

(y-2)(x-2)=2-[(y-2)-2]=2-[(z-y) -yl =y (x-y).
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TABLE 4. - -operation

o

o o =
e S
— ==
Q = Q o
—Q 2 O

Hence

(@-y)-[(y-2)-(z-2)]=(2-y) [(z-y) (z-y)
Since x - (y - x) = 1 for any € X, we have (z-y) - [(y-2) - (x-2)] = 1.
Therefore (ABCK2) holds. Moreover, by (P1) and (P4), - ((z-y)-y) =
(x-y)-(x-y) = 1. From this we have (dBCK3). Thus X is a dual
BC K-algebra. O

The converse of Theorem 3.11 is not true as seen in the following
example.

Example 3.12. Let X := {1, a,b, c} be a set with the - -operation given
by Table 4. It is easy to check that X is a dual BC'K-algebra. Since

(a-a)-(a-b)=a#1=a-(a-b), X is not a pre-logic.
For an element a of a pre-logic X, we consider the set
{z € Xl|a <z},

denoted by H(a), which is called the terminal section of an element
a. Since 1,a € H(a), H(a) is not empty. Using this notation, we can
characterize a commutative pre-logic.

Theorem 3.13. If a pre-logic X is commutative, then it satisfies the
identity:

(cg) H(a)NH(b)=H(aVb)
for all a,b € X.

Proof. Let X be a commutative pre-logic and let a,b € X. If ¢ €
H(a)NH(D), then a <z and b < z. Hence a Vb < z, which implies that
x € H(aVb). Hence H(a) N H(b) C H(aVb). Now if z € H(a V b),
then a Vb < x. Since a V b is an upper bound of a and b, it follows that
a<zandb<uz e,z € H(a) and x € H(b). Hence x € H(a) N H(b).
Therefore (cg) holds. O

-

Proposition 3.14. Let X be a pre-logic and x,y € X. Then (x V y)
(x) N (y) with equality in a commutative pre-logic.
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Proof. The inclusion (z V y) C (z) N (y) is trivial. Conversely, let X be
a commutative pre-logic and a € (z) N (y). Then (z) = {b € X|z < b}
and (y) = {b € X|y < b}, whence 2V y < a giving a € (z V y). O

Definition 3.15. A deductive system D is said to be mazimal if D # X
and D C D; C X implies D = Dy or D1 = X for D; € D(X).

Theorem 3.16. Let D be a maximal deductive system of a pre-logic
X. Then for any z,y € X, we havex -y € D ory-x € D.

Proof. Let x,y € X. If x € D, then x < y-x implies y-x € D. Similarly,
if y € D, then z-y € D, since y < z-y. Finally assume that = ¢ D and
y¢ Dandx-y ¢ D. Then D,y = {2z € X|(z-y) -z € D} is a deductive
system containing D and x - y. Since D is maximal, D,., = X. Hence
(x-y)-(y-x) € D, which implies from (P4) that y - ((z -y) - x) € D.
Using (P2) and Lemma 2.2(b) and (P3), we have

y-x=1-(y-x)
=(y-(z-y)) (y-z)
=y-((x-y) ) €D.
which completes the proof. O
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