Honam Mathematical J. 32 (2010), No. 4, pp. 625-632

DEDUCTIVE SYSTEMS IN COMMUTATIVE PRE-LOGICS

Young Hie Kim^a and Sun Shin Ahn^{b,*}

Abstract. The notions of commutative pre-logics and terminal sections are introduced. Characterizations of a commutative prelogic are provided. Properties of deductive systems in pre-logics which are upper semilattices are considered.

1. Introduction

I. Chajda and R. Halas [1] introduced the concept of a pre-logic which is an algebra weaker than a Hilbert algebra (an algebraic counterpart of intuitionistic logic) but strong enough to have deductive systems. They also studied algebraic properties of pre-logics and of lattices of their deductive systems.

In this paper, we introduced the notion of commutative pre-logics and terminal sections, and give some characterizations of commutative pre-logics in terms of lattices order relations, and terminal sections. We also study properties of deductive systems in pre-logics which are upper semilattices.

2. Preliminaries

We recall some definitions and results (see [1]).

DEFINITION 2.1. By a *pre-logic*, we mean a triple $(X; \cdot, 1)$ where X is a non-empty set, \cdot is a binary operation on X and $1 \in X$ is a nullary operation such that the following identities hold:

^{*}Corresponding author.

e-mail: yh0314@yonsei.ac.kr (Y. H. Kim), sunshine@dongguk.edu (S. S. Ahn)

Received August 26, 2010. Accepted November 03, 2010.

 $^{2000\} Mathematics\ Subject\ Classification.\ 06F35,\ 03G25.$

Keywords and phrases. (commutative) pre-logic deductive system(generated by a set) terminal section.

- (P1) $(\forall x \in X) (x \cdot x = 1),$
- $(P2) \ (\forall x \in X) \ (1 \cdot x = x),$
- (P3) $(\forall x \in X) (x \cdot (y \cdot z) = (x \cdot y) \cdot (x \cdot z)),$
- (P4) $(\forall x, y, z \in X) (x \cdot (y \cdot z) = y \cdot (x \cdot z)).$

LEMMA 2.2. Let $(X; \cdot, 1)$ be a pre-logic. Then the following hold:

- (a) $(\forall x \in X) (x \cdot 1 = 1);$
- (b) $(\forall x, y \in X) (x \cdot (y \cdot x) = 1);$
- (c) a binary operation \leq on A defined by

 $(\forall x, y \in X) (x \leq y \text{ if and only if } x \cdot y = 1)$

is a quasiorder on X (i.e., a reflexive and transitive binary relation on X);

(d) $1 \le x$ for all $x \in X$ implies x = 1.

REMARK 2.3. The quasiorder \leq of Lemma 2(c) is called the *induced* quasiorder of a pre-logic X.

LEMMA 2.4. Let \leq be the induced quasiorder of a pre-logic $X = (X; \cdot .1)$ and $x, y, z \in X$. If $x \leq y$, then $z \cdot x \leq z \cdot y$ and $y \cdot z \leq x \cdot z$.

DEFINITION 2.5. Let $X = (X; \cdot, 1)$ be a pre-logic. A non-empty subset D of X is called a *deductive system* of X if the following conditions hold:

- (d1) $1 \in D$;
- (d2) if $x \in D$ and $x \cdot y \in D$, then $y \in D$.

LEMMA 2.6. Let $X = (X; \cdot, 1)$ be a pre-logic and \leq its induced quasi order. The the following hold:

- (a) $(\forall x, y \in X) (x \cdot ((x \cdot y) \cdot y) = 1),$
- (b) $(\forall x, y, z \in X) ((y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 1),$
- (c) if D is a deductive system of X and $a \in D$, $a \leq b$, then $b \in D$.

Denote by $\mathcal{D}(X)$ the set of all deductive systems of X. It is clear that $\mathcal{D}(X)$ is non-empty.

Lemma 2.7. Let (X; *, 1) be a pre-logic and $D_i \in \mathcal{D}(X)$ for each $i \in I$. Then $D \in \mathcal{D}(X)$ for $D = \cap \{D_i | i \in I\}$.

It implies that the set $\mathcal{D}(X)$ forms a closure operator on the power set of X. For every subset $A \subseteq X$ there exists the least deductive system on X containing A. Denote it by $\langle A \rangle$ and call the *deductive systems* generated by A. If $A = \{a\}$, we will denote $\langle \{a\} \rangle$ briefly by $\langle a \rangle$ and call it the *principal deductive system*. Hence, if A, B are subsets of X, then

- (1) $A \subseteq \langle A \rangle$,
- (2) $A \subseteq B$ implies $\langle A \rangle \subseteq \langle B \rangle$,
- (3) $\langle \langle A \rangle \rangle = \langle A \rangle.$

If $A = \{x_1, \dots, x_n\}$, then we denoted by $\langle x_1, \dots, x_n \rangle = \langle \{x_1, \dots, x_n\} \rangle$.

Theorem 2.8. The lattice $\mathcal{D}(X)$ of all deductive systems of a prelogic X is an algebraic lattice whose compact elements are just finitely generated deductive systems. Let $A \subseteq X$. If $A = \emptyset$, then $\langle \emptyset \rangle = \{1\}$; if $A \neq \emptyset$, then

$$\langle A \rangle = \{ a \in X | x_1 \cdot (x_2 \cdot (\cdots (x_n \cdot a) \cdots)) = 1 \text{ for some } x_1, x_2, \cdots x_n \in A \}.$$

Definition 2.9 ([2]). A dual *BCK*-algebra is an algebra (X; *, 1) of type (2,0) satisfying (P1), lemma 2.2(a), and the following axioms: (dBCK1) $x * y = y * x = 1 \Rightarrow x = y$, (dBCK2) (x * y) * ((y * z) * (x * z)) = 1, (dBCK3) x * ((x * y) * y) = 1.

Proposition 2.10 ([2]). Let (X; *, 0) be a dual BCK-algebra and $x, y, z \in X$. Then

(1) x * (y * z) = y * (x * z),

(2) 1 * x = x.

3. Commutative pre-logics

Proposition 3.1. Let X be a pre-logic and let $x, y, z \in X$. If $z \leq x \cdot y$ and $z \leq x$, then $z \leq y$.

Proof. Assume that $z \leq x \cdot y$ and $z \leq x$ for any $x, y, z \in X$. Then $x \cdot y \in \langle z \rangle$ and $x \in \langle z \rangle$. Since $\langle z \rangle$ is a deductive system, it follows from (d2) that $y \in \langle z \rangle$. Hence $z \leq y$. \Box

We now give an equivalent condition of a deductive system.

Theorem 3.2. Let *D* be a non-empty subset of a pre-logic *X*. Then *D* is a deductive system of *X* if and only if for any *x* and *y* in *D*, $x \leq y \cdot z$ implies $z \in D$.

Proof. Let D be a deductive system of X and let $x, y \in D$. If $x \leq y \cdot z$, then $x \cdot (y \cdot z) = 1$. Using (d2), we have $y \cdot z \in D$. Using (d2) again, $z \in D$.

Conversely, assume that $x \leq y \cdot z$ implies $z \in D$ for all $x, y \in D$ and $z \in X$. Since $D \neq \emptyset$, we may assume $x \in D$. We note from Lemma

Young Hie Kim^{a} and Sun Shin $\operatorname{Ahn}^{b,*}$

TABLE 1. \cdot -operation

•	1	a	b	С	d
1	1	a	b	с	d
a	1	1	b	c	d
b	1	1	1	c	d
c	1	1	1	1	d
d	1	1	b	c	1

2.2(a) that $x \leq x \cdot 1$ so that $1 \in D$ by assumption. Let $x \in D$ and $x \cdot y \in D$. Combining Lemma 2.6(a) and assumption, we get $y \in D$. Hence D is a deductive system of X. This completes the proof. \Box

Theorem 3.3. For any deductive system D of a pre-logic X and any $a \in X$, the set $D_a := \{x \in X | a \cdot x \in D\}$ is the least deductive system of X containing D and a.

Proof. It follows from Lemma 2.2(a) that $a \cdot 1 = 1$ for any $a \in X$. Hence $1 \in D_a$. Using (P1), we have $a \cdot a = 1 \in D$ for any $a \in D$ and so $a \in D_a$. Let $x \in D_a$ and $x \cdot y \in D_a$. Then $a \cdot x \in D$ and $a \cdot (x \cdot y) \in D$. Since $a \cdot (x \cdot y) = (a \cdot x) \cdot (a \cdot y) \in D$ and $a \cdot x \in D$, we obtain $a \cdot y \in D$. Hence $y \in D_a$. Thus D_a is a deductive system. Let $x \in D$. Since $x \cdot (a \cdot x) = 1 \in D$ and D is a deductive system of X, we get $a \cdot x \in D$. Hence $x \in D_a$. Let H be any deductive system of X containing D and a. Let $x \in D_a$. Then $a \cdot x \in D \subseteq H$. Since $a \in H$ and H is a deductive system of X, we have $x \in H$. Therefore $D_a \subseteq H$. Thus D_a is the least deductive system of X containing D and a.

For any x, y in a pre-logic X, we define $x \lor y$ as $(y \cdot x) \cdot x$. Under this definition, using Lemma 2.2(a) and (P4), we have

$$\begin{aligned} x \cdot (x \lor y) = & x \cdot ((y \cdot x) \cdot x) \\ = & (y \cdot x) \cdot (x \cdot x) \\ = & (y \cdot x) \cdot 1 = 1, \end{aligned}$$

i.e., $x \leq x \vee y$. From Lemma 2.6(a), it follows that $y \leq x \vee y$. Hence $x \vee y$ is an upper bound of x and y. As easily seen, we have (c₁) $x \vee x = x$ and $x \vee 1 = 1 \vee x = 1$.

Example 3.4. Let $X := \{1, a, b, c, d\}$ be a pre-logic with the \cdot -operation given by Table 1. Then $a \lor d = a \neq 1 = d \lor a$ and a is the least upper bound of a and d. Hence, in general, $x \lor y \neq y \lor x$ and $x \lor y$ may not be the least upper bound of x and y.

Deductive systems in commutative pre-logics

TABLE 2. \cdot -operation

•	1	a	b	С
1	1	a	b	С
a	1	1	b	c
b	1	a	1	c
c	1	a	b	1

Definition 3.5. A pre-logic X is said to be *commutative* if it satisfies the following identity

(C) $(y \cdot x) \cdot x = (x \cdot y) \cdot y$, i.e., $x \lor y = y \lor x$ for all $x, y \in X$.

Example 3.6. Let $X := \{1, a, b, c\}$ be a set with the \cdot -operation given by Table 2. It is easy to show that $(X; \cdot, 1)$ is a commutative pre-logic.

Theorem 3.7. If X is a commutative pre-logic X, then it is a semilattice with respect to \lor .

Proof. Assume that X is a commutative pre-logic. As already seen, $x \lor y$ is an upper bound of x and y. We shall show that $x \lor y$ is the least upper bound of x and y, To do this, suppose that $x \leq z$ and $y \leq z$. Then $x \cdot z = y \cdot z = 1$. Hence by commutative we have (i): $z = 1 \cdot z = (x \cdot z) \cdot z = (z \cdot x) \cdot x$ and (ii): $z = 1 \cdot z = (y \cdot z) \cdot z = (z \cdot y) \cdot y$. Using (i) and (ii), we have (iii): $z = (z \cdot x) \cdot x = (((z \cdot y) \cdot y) \cdot x) \cdot x$. Set $u = (z \cdot y) \cdot y$. Then $z = (u \cdot x) \cdot x$ follows from (iii). Since $y \leq (z \cdot y) \cdot y = u$, by Lemma 2.4 we have $u \cdot x \leq y \cdot x$. Using Lemma 2.4, we get $(y \cdot x) \cdot x \leq (u \cdot x) \cdot x = z$. Hence we get $x \lor y \leq z$, which shows that $x \lor y$ is the least upper bound of x and y. Therefore we have the associative law with respect to \lor . Consequently, X is a semilattice with respect to \lor . The proof is complete.

The converse of Theorem 3.7 is not true as seen in the following example.

Example 3.8. Let $X := \{1, a, b, c\}$ be a set with the \cdot -operation given by Table 3. It is easy to check that X is a pre-logic with semilattice with

respect to \lor . Since $a \lor b = a \neq 1 = b \lor a$, X is not commutative.

Theorem 3.9. Let X be a pre-logic. If X is commutative, then the following properties hold:

 $(c_2) \ y \cdot (x \lor z) = (z \cdot x) \cdot (y \cdot x).$

Young Hie Kim^{a} and Sun Shin Ahn^{b,*}

Table	3.	•	-operation
-------	----	---	------------

•	1	a	b	С
1	1	a	b	С
a	1	1	b	c
b	1	1	1	c
c	1	1	b	1

- (c₃) $x \leq y$ implies $x \lor y = y$.
- $(c_4) \ z \leq x \text{ and } x \cdot z \leq y \cdot z \text{ imply } y \leq x.$
- (c5) $y \lor x = x \lor (y \lor x)$, i.e., $(x \cdot y) \cdot y = (((x \cdot y) \cdot y) \cdot x) \cdot x$. for all $x, y \in X$.

Proof. (c₂) Using (P4), we have $y \cdot (x \lor z) = y \cdot ((z \cdot x) \cdot x) = (z \cdot x) \cdot (y \cdot x)$. (c₃) If $x \le y$, then $y = 1 \cdot y = (x \cdot y) \cdot y = y \lor x$. Hence by the commutativity, $x \le y$ implies $x \lor y = y$.

(c₄) Assume that X is commutative. If $z \leq x$ and $x \cdot z \leq y \cdot z$, then $z \cdot x = 1$ and $(x \cdot z) \cdot (y \cdot z) = 1$. Using (P2), (P4) and commutative, we have

$$y \cdot x = y \cdot (1 \cdot x)$$
$$= y \cdot ((z \cdot x) \cdot x)$$
$$= y \cdot ((x \cdot z) \cdot z)$$
$$= (x \cdot z) \cdot (y \cdot z)$$
$$= 1$$

which implies that $y \leq x$.

 (c_5) Let X be a commutative pre-logic and let $x, y \in X$. We recall that $x \leq (x \cdot y) \cdot y$ means $x \leq y \lor x$. Then (c_3) yields $x \lor (y \lor x) = y \lor x$, which is (c_5) . This completes the proof.

Proposition 3.10. If $(X; \cdot, 1)$ is a commutative pre-logic, then for all $x, y \in X, x \cdot y = 1$ and $y \cdot x = 1 \Rightarrow x = y$.

Proof. Suppose that $x \cdot y = 1$ and $y \cdot x = 1$ for all $x, y \in X$. Then $x = 1 \cdot x = (y \cdot x) \cdot x = (x \cdot y) \cdot y = y$.

Theorem 3.11. If $(X; \cdot, 1)$ is a commutative pre-logic, then $(X; \cdot, 1)$ is a dual *BCK*-algebra.

Proof. Proposition 3.10 yields (dBCK1). Now let $x, y, z \in X$. Applying (P4) and (C), we have

 $(y \cdot z) \cdot (x \cdot z) = x \cdot [(y \cdot z) \cdot z] = x \cdot [(z \cdot y) \cdot y] = (z \cdot y) \cdot (x \cdot y).$

TABLE	4.	· -0	peration
-------	----	------	----------

•	1	a	b	С
1	1	a	b	c
a	1	1	a	a
b	1	1	1	a
c	1	1	a	1

Hence

$$(x \cdot y) \cdot [(y \cdot z) \cdot (x \cdot z)] = (x \cdot y) \cdot [(z \cdot y) \cdot (x \cdot y)].$$

Since $x \cdot (y \cdot x) = 1$ for any $x \in X$, we have $(x \cdot y) \cdot [(y \cdot z) \cdot (x \cdot z)] = 1$. Therefore (dBCK2) holds. Moreover, by (P1) and (P4), $x \cdot ((x \cdot y) \cdot y) = (x \cdot y) \cdot (x \cdot y) = 1$. From this we have (dBCK3). Thus X is a dual *BCK*-algebra.

The converse of Theorem 3.11 is not true as seen in the following example.

Example 3.12. Let $X := \{1, a, b, c\}$ be a set with the \cdot -operation given by Table 4. It is easy to check that X is a dual *BCK*-algebra. Since $(a \cdot a) \cdot (a \cdot b) = a \neq 1 = a \cdot (a \cdot b)$, X is not a pre-logic.

For an element a of a pre-logic X, we consider the set

$$\{x \in X | a \le x\},\$$

denoted by H(a), which is called the *terminal section* of an element a. Since $1, a \in H(a)$, H(a) is not empty. Using this notation, we can characterize a commutative pre-logic.

Theorem 3.13. If a pre-logic X is commutative, then it satisfies the identity:

 $(c_6) \quad H(a) \cap H(b) = H(a \lor b)$

for all $a, b \in X$.

Proof. Let X be a commutative pre-logic and let $a, b \in X$. If $x \in H(a) \cap H(b)$, then $a \leq x$ and $b \leq x$. Hence $a \lor b \leq x$, which implies that $x \in H(a \lor b)$. Hence $H(a) \cap H(b) \subseteq H(a \lor b)$. Now if $x \in H(a \lor b)$, then $a \lor b \leq x$. Since $a \lor b$ is an upper bound of a and b, it follows that $a \leq x$ and $b \leq x$, i.e., $x \in H(a)$ and $x \in H(b)$. Hence $x \in H(a) \cap H(b)$. Therefore (c_6) holds.

Proposition 3.14. Let X be a pre-logic and $x, y \in X$. Then $\langle x \lor y \rangle \subseteq \langle x \rangle \cap \langle y \rangle$ with equality in a commutative pre-logic.

Proof. The inclusion $\langle x \lor y \rangle \subseteq \langle x \rangle \cap \langle y \rangle$ is trivial. Conversely, let X be a commutative pre-logic and $a \in \langle x \rangle \cap \langle y \rangle$. Then $\langle x \rangle = \{b \in X | x \leq b\}$ and $\langle y \rangle = \{b \in X | y \leq b\}$, whence $x \lor y \leq a$ giving $a \in \langle x \lor y \rangle$. \Box

Definition 3.15. A deductive system D is said to be *maximal* if $D \neq X$ and $D \subseteq D_1 \subseteq X$ implies $D = D_1$ or $D_1 = X$ for $D_1 \in \mathcal{D}(X)$.

Theorem 3.16. Let *D* be a maximal deductive system of a pre-logic *X*. Then for any $x, y \in X$, we have $x \cdot y \in D$ or $y \cdot x \in D$.

Proof. Let $x, y \in X$. If $x \in D$, then $x \leq y \cdot x$ implies $y \cdot x \in D$. Similarly, if $y \in D$, then $x \cdot y \in D$, since $y \leq x \cdot y$. Finally assume that $x \notin D$ and $y \notin D$ and $x \cdot y \notin D$. Then $D_{x \cdot y} = \{z \in X | (x \cdot y) \cdot z \in D\}$ is a deductive system containing D and $x \cdot y$. Since D is maximal, $D_{x \cdot y} = X$. Hence $(x \cdot y) \cdot (y \cdot x) \in D$, which implies from (P4) that $y \cdot ((x \cdot y) \cdot x) \in D$. Using (P2) and Lemma 2.2(b) and (P3), we have

$$y \cdot x = 1 \cdot (y \cdot x)$$

= $(y \cdot (x \cdot y)) \cdot (y \cdot x)$
= $y \cdot ((x \cdot y) \cdot x) \in D.$

which completes the proof.

References

- I. Chajda and R. Halas, Algebraic properties of pre-logics, Math. Slovaca 52 (2002), 157–175.
- [2] K. H. Kim and Y. H. Yon, Dual BCK-algebra and MV-algebra, Sci. Math. Japon. 66(2007), 247-253.
- [3] A. Walendiziak, On Commutative BE-algebras, Sci. Math. Japon. on line (e2007), 585–588.

^aDepartment of Mathematics Yonsei University, Seoul 120-749, Korea

^bDepartment of Mathematics Education Dongguk University, Seoul 100-715, Korea

632