Honam Mathematical J. 32 (2010), No. 4, pp. 619-624

QUASI GENERALIZED OPEN SETS AND QUASI GENERALIZED CONTINUITY ON BIGENERALIZED TOPOLOGICAL SPACES

WON KEUN MIN AND YOUNG KEY KIM

Abstract. We introduce the notions of bigeneralized topological spaces and quasi generalized open sets, and study some basic properties for the sets. We also introduce the notion of quasi generalized continuity on bigeneralized topological spaces, and investigate characterizations for the continuity.

1. Introduction

In [1], Császár introduced the notions of generalized neighborhood systems and generalized topological spaces. He also introduced the notions of continuous functions and associated interior and closure operators on generalized topological spaces in [1]. The concept of bitopological spaces was introduced by Kelly [3]. A set equipped with two topologies is called a bitopological space. Datta [2] has states that a subset S of bitopological space (X, P, Q) is *quasiopen* if for every $x \in S$, there exists a P-open set U such that $x \in U \subseteq S$, or a Q-open set V such that $x \in V \subseteq S$.

The purpose of this paper is to introduce and investigate the notion of quasi generalized open sets defined by using two generalized topologies instead of two topologies. We also introduce the notion of quasi generalized continuity between bigeneralized topological spaces, and investigate characterizations for the continuity.

⁰Corresponding Author : wkmin@kangwon.ac.kr

Received September 6, 2010. Accepted November 8, 2010.

²⁰⁰⁰ Mathematics Subject Classification: 54A05, 54C05.

Key words and phrases: generalized topological space, bigeneralized topological space, quasi generalized open sets, quasi generalized continuous function.

2. Preliminaries

We recall some notions and notations defined in [1]. Let X be a nonempty set and ψ be a collection of subsets of X. Then ψ is called a generalized topology (briefly GT) on X iff $\emptyset \in \psi$ and $G_i \in \psi$ for $i \in I \neq \emptyset$ implies $G = \bigcup_{i \in I} G_i \in \psi$. We call the pair (X, ψ) a generalized topological space (briefly GTS) on X. The elements of ψ are called ψ -open sets and the complements are called ψ -closed sets.

If ψ is a generalized topology on X and $A \subseteq X$, the *interior* of A (denoted by $i_{\psi}(A)$) is the union of all $G \subseteq A$, $G \in \psi$, and the *closure* of A (denoted by $c_{\psi}(A)$) is the intersection of all ψ -closed sets containing A.

Let ψ and ψ' be generalized topologies on X and Y, respectively. Then a function $f: (X, \psi) \to (Y, \psi')$ is said to be (ψ, ψ') -continuous [1] if $G' \in \psi'$ implies that $f^{-1}(G') \in \psi$.

Theorem 2.1. ([1]) Let (X, ψ) be generalized topological space. Then

(1) $c_{\psi}(A) = X - i_{\psi}(X - A);$ (2) $i_{\psi}(A) = X - c_{\psi}(X - A).$

3. Quasi generalized open sets in bigeneralized topological spaces

Definition 3.1. Let X be a nonemptyset and ψ_1, ψ_2 generalized topologies on X. A triple (X, ψ_1, ψ_2) is called a *bigeneralized topological space* (briefly *biGTS*).

Throughout the present paper, (X, ψ_1, ψ_2) , (Y, μ_1, μ_2) and $(Z, \lambda_1, \lambda_2)$ denote bigeneralized topological spaces.

Remark 3.2. In a bigeneralized topological space (X, ψ_1, ψ_2) , if the generalized topologies ψ_1, ψ_2 are topologies on X, then the bigeneralized topological space (X, ψ_1, ψ_2) is a bitopological space introduced by Kelly in [3].

Definition 3.3. Let (X, ψ_1, ψ_2) be a biGTS. A subset A of X is said to be quasi (ψ_1, ψ_2) -open (briefly quasi q_{ψ} -open) if for every $x \in A$, there exists a ψ_1 -open set U such that $x \in U \subseteq A$, or a ψ_2 -open set V such that $x \in V \subseteq A$. A subset A of X is said to be quasi q_{ψ} -closed if the complement of A is quasi q_{ψ} -open.

620

In a given bigeneralized topological space (X, ψ_1, ψ_2) , a quasi q_{ψ} -open set need not be ψ_1 -open or ψ_2 -open as shown in the next example.

Example 3.4. Let $X = \{a, b, c, d\}$. Consider two generalized topologies $\psi_1 = \{\emptyset, \{a, b\}\}$ and $\psi_2 = \{\emptyset, \{a, c\}\}$ on X. Then $\{a, b, c\}$ is a quasi q_{ψ} -open set but it is neither ψ_1 -open nor ψ_2 -open

Lemma 3.5. Let (X, ψ_1, ψ_2) be a biGTS and A a subset of X. Then (1) A is quasi q_{ψ} -open if and only if A is a union of a ψ_1 -open set and a ψ_1 -open set.

(2) A is quasi q_{ψ} -closed if and only if A is a intersection of a ψ_1 -closed set and a ψ_1 -closed set.

(3) Any union of quasi q_{ψ} -open sets is quasi q_{ψ} -open.

Proof. Obvious.

621

Remark 3.6. In a given bigeneralized topological space, the intersection of two quasi q_{ψ} -open sets may not be quasi g-open as shown in the next example.

Example 3.7. Let $X = \{a, b, c, d\}$. Consider two generalized topologies $\psi_1 = \{\emptyset, \{d\}, \{a, b\}, \{a, b, d\}\}$ and $g_2 = \{\emptyset, \{c\}\{a, d\}, \{a, c, d\}\}$ on X. Then $\{a, b, c\}$ and $\{a, c, d\}$ are quasi q_{ψ} -open sets but the intersection $\{a, c\}$ is not quasi q_{ψ} -open set.

Definition 3.8. Let (X, ψ_1, ψ_2) be a biGTS and $A \subseteq X$. We define the quasi q_{ψ} -closure (briefly $c_{q_{\psi}}(A)$) and the quasi q_{ψ} -interior (briefly $i_{q_{\psi}}(A)$) as the following:

 $c_{q_{\psi}}(A) = \cap \{F : A \subseteq F \text{ for a quasi } q_{\psi}\text{-closed set } F\};$

 $i_{q_{\psi}}(A) = \bigcup \{ G : G \subseteq A \text{ for a quasi } q_{\psi} \text{-open set } G \}.$

Let (X, ψ_1, ψ_2) be a biGTS and A a subset of X. The ψ_i -closure and ψ_i -interior of A with respect to ψ_i are denoted by $c_{\psi_i}(A)$ and $i_{\psi_i}(A)$, respectively, for i = 1, 2.

Theorem 3.9. Let (X, ψ_1, ψ_2) be a biGTS and $A \subseteq X$. Then (1) $c_{q_{\psi}}(A) = c_{\psi_1}(A) \cap c_{\psi_2}(A)$.

(1) $i_{q_{\psi}}(A) = i_{\psi_1}(A) \cup i_{\psi_2}(A).$ (2) $i_{q_{\psi}}(A) = i_{\psi_1}(A) \cup i_{\psi_2}(A).$

(3) A is quasi q_{ψ} -closed iff $c_{q_{\psi}}(A) = A$.

(4) A is quasi q_{ψ} -open iff $i_{q_{\psi}}(A) = A$.

(5) $x \in c_{q_{\psi}}(A)$ iff for every quasi q_{ψ} -open set U containing $x, A \cap U \neq \emptyset$.

(6) $x \in i_{q_{\psi}}(A)$ iff there exists a quasi q_{ψ} -open set U containing x such that $x \in U \subseteq A$.

Won Keun Min and Young Key Kim

(7)
$$c_{q_{\psi}}(A) = X - i_{q_{\psi}}(X - A); i_{q_{\psi}}(A) = X - c_{q_{\psi}}(X - A)$$

Proof. (1) From Lemma 3.5, it follows

$$c_{q_{\psi}}(A) = \bigcap \{F : A \subseteq F \text{ for a quasi } q_{\psi}\text{-closed set } F \}$$

= $\bigcap \{F : A \subseteq F, F = F_1 \cap F_2 \text{ for a } \psi_i\text{-closed set } F_i, i = 1, 2 \}$
= $\bigcap \{F_1 \cap F_2 : A \subseteq F_1 \cap F_2 \text{ for a } \psi_i\text{-closed set } F_i, i = 1, 2 \}$
= $(\bigcap \{F_1 : A \subseteq F_1 \text{ for a } \psi_1\text{-closed set } F_1 \})$
 $\cap (\bigcap \{F_2 : A \subseteq F_2 \text{ for a } \psi_2\text{-closed set } F_2 \})$
= $c_{\psi_1}(A) \cap c_{\psi_2}(A).$

Similarly, (2) is obtained.

(3) If A is quasi q_{ψ} -closed, then $A = F_1 \cap F_2$ for a ψ_1 -closed set F_1 and a ψ_2 -closed set F_2 , and so $c_{\psi_1}(A) \subseteq c_{\psi_1}(F_1)$ and $c_{\psi_2}(A) \subseteq c_{\psi_2}(F_2)$. And by (1),

$$c_{q_{\psi}}(A) = c_{\psi_1}(A) \cap c_{\psi_2}(A) \subseteq c_{\psi_1}(F_1) \cap c_{\psi_2}(F_2) \subseteq F_1 \cap F_2 = A.$$

Consequently, $c_{q_{\psi}}(A) = A$.

(4) The proof is similar to that of (3).

(5),(6) It can be easily proved.

(7) From Theorem 2.1, (1) and (2), it follows

$$c_{q_{\psi}}(A) = c_{\psi_1}(A) \cap c_{\psi_2}(A) = (X - i_{\psi_1}(X - A)) \cap (X - i_{\psi_2}(X - A)) = X - (i_{\psi_1}(X - A) \cup i_{\psi_2}(X - A)) = X - i_{q_{\psi}}(X - A).$$

Similarly, we can show that $i_{q_{\psi}}(A) = X - c_{q_{\psi}}(X - A).$

Definition 3.10. Let (X, ψ_1, ψ_2) be a biGTS. X is said to be *quasi* $q_{\psi}T_1$ if for $x, y \in X, x \neq y$, there exist quasi q_{ψ} -open sets U and V such that $x \in U, y \notin U$ and $x \notin V, y \in V$.

Theorem 3.11. Let (X, ψ_1, ψ_2) be a biGTS. Then X is quasi $q_{\psi}T_1$ iff singletons are quasi q_{ψ} -closed.

Proof. Let X be quasi $q_{\psi}T_1$ and $x \in X$. For $y \in X$ with $x \neq y$, there exists a quasi q_{ψ} -open set U_y such that $y \in U_y$ and $x \notin U_y$. Then $X - U_y$ is a quasi q_{ψ} -closed set containing x and so $\cap (X - U_y) = \{x\}$. Hence the singleton set $\{x\}$ is quasi q_{ψ} -closed.

The converse is obvious.

622

623

Let (X, ψ_1, ψ_2) be a biGTS and $A \subseteq X$. We define the quasi q_{ψ} -kernel (briefly $q_{\psi} ker(A)$) as the following:

 $q_{\psi}ker(A) = \cap \{F : A \subseteq F \text{ for a quasi } q_{\psi}\text{-open set } F\}.$

Theorem 3.12. Let (X, ψ_1, ψ_2) be a biGTS. Then the following are equivalent:

- (1) X is quasi $q_{\psi}T_1$.
- (2) For every $A \subseteq X$, $A = q_{\psi} ker(A)$.
- (3) For $x \in X$, $\{x\} = q_{\psi} ker(\{x\})$.

Proof. (1) \Rightarrow (2) Let $A \subseteq X$. For each $x \notin A$, from Theorem 3.11, $X - \{x\}$ is quasi q_{ψ} -open and $A \subseteq X - \{x\}$. This implies

$$A \subseteq q_{\psi} ker(A) \subseteq \cap_{x \notin A} (X - \{x\}) = A.$$

So $A = q_{\psi} ker(A)$.

 $(2) \Rightarrow (3)$ Obvious.

(3) \Rightarrow (1) For $x, y \in X$ with $x \neq y$, by (3), $\{x\} = q_{\psi}ker(\{x\})$ and $\{y\} = q_{\psi}ker(\{y\})$. Since $y \notin q_{\psi}ker(\{x\})$ and $x \notin q_{\psi}ker(\{y\})$, there exist quasi q_{ψ} -open sets U and V such that $x \in U, y \notin U$ and $y \in V$, $x \notin V$. Hence X is quasi $q_{\psi}T_1$.

4. quasi (q_{ψ}, q_{μ}) -continuity

Definition 4.1. Let (X, ψ_1, ψ_2) and (Y, μ_1, μ_2) be two biGTS's. Then a function $f : (X, \psi_1, \psi_2) \to (Y, \mu_1, \mu_2)$ is said to be *quasi* (q_{ψ}, q_{μ}) continuous (or *quasi generalized continuous*) if for every quasi q_{μ} -open set U in (Y, μ_1, μ_2) , $f^{-1}(U)$ is quasi q_{ψ} -open in (X, ψ_1, ψ_2) .

Let (X, ψ_1, ψ_2) be a biGTS. The bigeneralized topological space X is said to be *strong* if X is quasi q_{ψ} -open.

Theorem 4.2. Let $f : (X, \psi_1, \psi_2) \to (Y, \mu_1, \mu_2)$ be a quasi (q_{ψ}, q_{μ}) continuous function on two biGTS's $(X, \psi_1, \psi_2), (Y, \mu_1, \mu_2)$. If (Y, μ_1, μ_2) is strong, then (X, ψ_1, ψ_2) is also strong.

Proof. Since Y is quasi q_{μ} -open, from quasi (q_{ψ}, q_{μ}) -continuity of f, $f^{-1}(Y) = X$ must be quasi q_{ψ} -open. Thus X is strong.

Theorem 4.3. Let (X, ψ_1, ψ_2) and (Y, μ_1, μ_2) be two biGTS's. Then the following are equivalent:

(1) f is quasi (q_{ψ}, q_{μ}) -continuous.

(2) $f^{-1}(i_{q_{\mu}}(B)) \subseteq i_{q_{\psi}}(f^{-1}(B))$ for all $B \subseteq Y$.

(3) $c_{q_{\psi}}(f^{-1}(B)) \subseteq f^{-1}(c_{q_{\mu}}(B))$ for all $B \subseteq Y$. (4) $f(c_{q_{\psi}}(A)) \subseteq c_{q_{\mu}}(f(A))$ for all $A \subseteq X$.

(5) For every quasi q_{μ} -closed set F in Y, $f^{-1}(F)$ is quasi q_{ψ} -closed in X.

(6) For each $x \in X$ and each quasi q_{μ} -open set V containing f(x), there exists a quasi q_{ψ} -open set U containing x such that $f(U) \subseteq V$.

Proof. (1) \Rightarrow (2) For every $B \subseteq Y$, since $i_{q_{\mu}}(B)$ is quasi q_{μ} -open, by (1), easily we have the condition (2).

 $(2) \Rightarrow (1)$ Obvious.

(2) \Leftrightarrow (3) It follows from Theorem 3.9.

 $(3) \Leftrightarrow (4)$ and $(1) \Leftrightarrow (5)$ Obvious.

(6) \Rightarrow (1) Let V be a quasi q_{μ} -open set in (Y, μ_1, μ_2) and $x \in f^{-1}(V)$. Then by (6), there exists a quasi q_{ψ} -open set U_x containing x such that $f(U_x) \subseteq V$. So by Lemma 3.5, $f^{-1}(V) = \bigcup U_x$ is quasi q_{ψ} -open. Thus f is quasi (q_{ψ}, q_{μ}) -continuous.

 $(1) \Rightarrow (6)$ Obvious.

References

- [1] Á. Császár; Generalized Topology, Generalized Continuity, Acta Math. Hungar., 96 (2002), 351-357.
- [2] M. C. Datta; Contribution to the theory of bitopological spaces, Ph. D. Cissertation, B.I.T. Pilani(India), 1971.
- [3] J. C. Kelly; Bitopological spaces, Proc. London Mat. Soc., 13(3)(1963), 71-89.

Department of Mathematics, Kangwon National University, Chuncheon, 200-701, Korea E-mail: wkmin@kangwon.ac.kr

Department of Mathematics, MyongJi University, Youngin 449-728, Korea E-mail: ykkim@mju.ac.kr

624