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INTERVAL-VALUED FUZZY SUBGROUPS AND RINGS

HEeE WoN KaNG* AND KuL Hur**

Abstract. We introduce the concepts of interval-valued fuzzy sub-
groups [resp. normal subgroups, rings and ideals] and investigate
some of it’s properties.

1. Introduction

In 1986, Atanassuv([l] introduced the concept of intuitionistic fuzzy
sets as a generalitation of fuzzy sets introduced by Zadeh[13], After
then, Banerjee and Basnet[3], and Hur et. al[8, 9] applied it to algebra.
Coker[5, 6] studied intuitionistic fuzzy topological spaces.

In 1975, Zadeh[14] suggested the notion of interval-valued fuzzy sets
as another generalization of fuzzy sets. After that time, Biswas[4] ap-
plied it to group theory, and Gorzalczany|[7] suggested a method of in-
ference in approximate reasoning by using interval-valued fuzzy sets.
Moreover Montal and Samanta[12] introduced the concept of topology
of interval-valued fuzzy sets and investigate some of it’s properties. Re-
cently, Hur et. al[10] studies interval-valued fuzzy relations in the sense
of a lattice theory. In this paper, we introduce the concept of interval-
valued fuzzy subgroups [resp.normal subgroup, rings and ideals] and
investigate some of it’s properties.

2. Preliminaries
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In this section, we list some concepts and results related to interval-
valued fuzzy set theory and needed in next sections.

Let D(I) be the set of all closed subintervals of the unit interval [0, 1].
The elements of D(I) are generally denoted by capital letters M, N, - - -,
and note that M = [M*, MY], where M and MY are the lower and
the upper end points respectively. Especially, we denoted , 0 = [0,0], 1
=[1,1], and a = [a,a] for every a € (0,1), We also note that

(i) (YM,N € D(I)) (M = N & MF = N, MY = NY),

(i) (VM,N € D(I)) (M = N < M* < N, MV < NU),
For every M € D(I), the complement of M, denoted by M¢, is defined
by M¢ =1~ M =[1—- MY, 1~ M¥]|(See[12]).

Definition 2.1[7,14]. A mapping A : X — D(I) is called an interval-
valued fuzzy set(is short, IVFS) in X, denoted by A = [AL, AY] if
AE AL € TX such that AV < AV ie., AY(x) < AY(x) for each z € X,
where AL (z)[resp AV (z)] is called the lower|resp upper] end point of
to A. For any [a,b] € D(I), the interval-valued fuzzy A in X defined by

A(x) = [AL(x), AY(x)] = [a,b] for each 2 € X is denoted by [a, b] and if
a = b, then the IVFS [a, b] is denoted by simply a. In particular, Oand 1
denote the interval-valued fuzzy empty set and the interval-valued fuzzy

whole set in X, respectively.

We will denote the set of all IVFSs in X as D(I)X .It is clear that
set A =[A, A] € D(I)¥ for each A € I,

For sets X,Y and Z, f = (f1,f2) : X — Y X Z is called a complex
mapping if f1: X —Y and fy : Y — Z are mappings.

Definition 2.1’ [1,9]. Let X be a set. A complex mapping A =
(na,va) : X — I x 1 is called a intuitionistic fuzzy set(in short, IFS) in
X if pa(z) +va(z) < lfor each z € X, where the mappings pa : X — I
and v4 : X — I denote the degree of membership(namely pa(z)) and
the degree of nonmembership(namely v4(z)) of each x € X to A, respec-
tively. in particular, 0. and 1. denote the intuitionistic fuzzy empty set
and intuitionistic fuzzy whole set in X defined by 0~(z) = (0,1) and
1~(z) = (1,0) for each x € X, respectively.

We will denoted the set of all the IFSs in X as IFS(X).
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Result 2.A[2, Lemma 1]. We define two mappings f : D(I)* — IFS(X)
and g : IFS(X) — D(I)¥ as follows, respectively:

(i) f(A) = (AL, 1—-AY) VA e D)X
(ii) g(B) = [up,1—vp], VB € IFS(X).
In this case , we write as f(A) = A, and g(B) = B* , respectively. Then
(a) go f =1px, i.e., g(f(A)) = A, VA € D(I)X
(a) fog=lipgx), i-e., f(g(B)) = B, VB € IFS(X).

Definition 2.2[7]. AnIVFS A is called an interval-valued fuzzy point(in
short, IVFP) in X with the support x € X and the value [a, b] € D(I)
with b > 0, denoted by A = z[qy, if for each y € X

A [a,0] if y=u,
() _{ 0 otherwise

In particular, if b = a, then x[, ) is denoted by xq.
We will denote the set of all IVFPs in X as IVFp(X) .

Definition 2.3 [7]. Let A,B € D(I)X and let {Ay}aer C D(I)¥.
Then:

(i) Ac Biff A < B and AY < BY.
(11)A Biff AC Band B C A.
(iii) A =1 - AY 1 - AL,

(iv) AuB = [Al'v B, AV v BY).
(iv)

iv) | Ao =1V 4%,/ A4

aecl’ acl acl
(v) AN B = [A¥ A BE AV A BY.

(V)/ ﬂ Ao = [/\ Aéa /\ Ag]

ael ael ael
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Result 2.B[7, Theorem 1]. Let A, B,C € D(I)*X and let {An}aer C
D(I)*. Then:
(a) 0 C AcCl.
(b) AUB=BUA,ANB=BnA.
(c) AU(BUC)=(AUB)UC ,ANn(BNC)=(AnB)nC.
(d) ABCAUB,ANBCA,B.
(

e) An(|J4a) = [J (4N A,).

ael ael’
U(ﬂ Aa) = ﬂ(AUAa)'
ael ael

(g) (0) =1, (1)°=0.

(1) (4°)° = A

() (| 4a)* =[] 45, ([ 4a)° = | 45

acl acl’ acl’ acl

Definition 2.4[7]. Let A € D(I)* and let z); € IVFp(X). Then:

(i) The set {z € X : AY(x) > 0} is called the support of A and is
denoted by S(A).

(i) xps said to belong to A, denoted by zp € A, if MY < A (z)
and MY < AY(z) for each z € X.

It is obvious that A = U xy and 2y € Aif and only if 1 € AF
Ty EA
and z,,u € AY.

Definition 2.5[7]. Let f : X — Y be a mapping, let A € D(I)* and
let B € D(I)Y. Then:

(i) the image of A under f, denoted by f(A), is an IVFS in YV
defined as follows: For each y € Y,

\/ Al@) it fy) £ 2,
FA W) = < v=f(

0 otherwise

and

\V AY@) it Sy £ e,
FAY(y) = { v=f@)

0 otherwise.



Interval-Valued Fuzzy Subgroups and Rings 597

(ii) the preimage of B under f, denoted by f~!(B), is an IVFS in
Y defined as follows: For each y € Y,

FHB) (y) = (B o f)(x) = B (f ()

and

FHB)(y) = (BY o f)(z) = BY (f(x))

It can be easily seen that f(A) = [f(AL), f(AY)] and f~Y(B) =
[F=H(B5), f~1(BY)].

Result 2.C[7, Theorem 2|. Let f : X — Y beamappingandg:Y — Z
be a mappmg Then:

) [7HBY) = [fY(B)]°, VB € D(I)".

(a

(b) [f(A)]° C f(AC) VAeD(I)Y-

(¢c) B1 C By = f~1(By) C f~1(Ba), where By, By € D(I)Y.

(d) A1 C A2 = f(Al) C f(AQ) where Al,AQ S D(I)X

(e) fF(f~YB ))CB,VBGD(I) :

(f) A cC f(fY(A)), VA € D(I)Y.

(8) (g0 f)~MC) = fHg1(C)),YC € D(I)”.

(h) f71({J Ba) = | £ Ba, where {Bu}aer € D(I)".
acl acl

h) f71(() Ba) = () ' Ba, where {Ba}acr € DI)Y.

a€el ael

3. Interval-valued fuzzy subgroupoids

Definition 3.1. Let (X,-) be a groupoid and let A, B € D(I)X. Then
the interval-valued fuzzy product of A and B, denoted by A o B, is an
IVFES in X defined as follows : For each x € X,

[V [ARw) A BE ), \/ 1AY () ABY(2)]] if gz =,
(AOB)(:L’) = { y>£x y>£:(:

0 otherwise.

Definition 3.1'[8]. Let X, o be geoupoid and let A, B € IFS(X). Then
the intuitionistic fuzzy product of A and B, Ao B, is defined as follow :
For any z € X,
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V [pa) Aus(2)]] it 3(y,2) € X x Xwith yz ==,

pacB(T) = yz=z
0 otherwise.

and

/\ valy) Vg(z)] if F(y,2) € X x Xwith yz ==z,

VAoB (l‘) = Yyz=x
1 otherwise.

Remark 3.1. By Result 2.A, Definition 3.1 is reduced to Definition 3.1’
and the reverse holds.

Proposition 3.2. Let 70" be same as above, let xp7,yny € IVFp(X)
and let A, B € D(I)X. Then:
(a) zar o yn = (2Y) MN-
(a) Ao B = U TN O YN-
Ty EAYNEB

Proof. (a) Let z € X. Then

: )
if 2’y =z,

0 otherwise.

[ IMEANE, MY ANY] i 2= ay,
N 0 otherwise.

= (zy)mnN
(b) Let C' = U Tr O YN, G.e.,
rp EAYNEB
C=| /\ (Zpre o yne), /\ (zpv 0 ynv)).

xMLEAL7yNL€BL Z‘MUEAU,yNUEBU
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For each z € X, we may assume that Ju,v € X such that uv = z,
xp(u) # 0 and yy(v) # 0, without loss of generality. Then

(Ao B)H(z) = \/ [A"(u) A BH(v)]

Z=Uuv

> \/ ( \/ [2ase (w) Ayne(v)])

Z=uv Ty L GAL,yNL €BL

= ( U Ty o Yne)
xA{LGAL,yNLEBL
= CE(2).
Since uy(y,) € A and vp(,) € B,

Ch(z) = V (V feare () Ayye (o))

x]\JL GAL’yNL GBL Z=uv

— \/ ( \/ [z (u) Ayye(v)])

Z=Uv T/ L EAL,yNL eBL

> \/ [waz (@) Avpray ()]

Z=Uuv

= \/ [4%(w) A BY(v)]
Z=uv
= (Ao B)k(2).
Thus (Ao B)Y = CF. By the similar arguments, we have (4o B)Y = CV.
Hence

AOB: U TpL ©OYNL. |

:EA{LEAL,yNLEBL

The following is the immediate result of Definition 3.1.

Proposition 3.3. Let (X,0) be a groupoid, and let ”0” be same as
above.

(a) if 70" is associative[resp. commutative] in X, the so is "o” in
D(I)X.

(b) if ”0” is has an identity e € X, then e; € IVFp(X) is an
identity of "o” in D(I)X, i.e., Aoey = A =eq 0 A for each A € D(I)X.

Definition 3.4. Let (G,) be a groupoid and let 0 = A € D(I)X. Then
A is called an interval-valued fuzzy groupoid (in short, IVGP) in G if
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AocAC A, ie., Al o AL ¢ AL and AV 0 AV C AV,
We will denote the IVGPs in G as IVGP(G).

Remark 3.4. (a) If A is a fuzzy groupoid in a group G in the sense of
Liu[11], then A = [A, A] € IVGP(G).

(b)If A € IVGP(G), then AL AV € FGP(G) and A, € IFGP(G),
where FGP(G)[resp. IFGP(G)] denoted the set of all fuzzy groupoids in
the sense of Liu[resp. the set of all intuitionistic fuzzy groupiods in the
sense of Hur et al.].

The followings are the immediate results of Definitions 3.1 and 3.4.

Proposition 3.5. Let (G,-) be a groupoid and let 0 # A € D(I)¥X.
Then the followings are equivalent:

(a) A € IVGP(G).

(b) For any zp,yny € A, xproyn € A, i.e., (A, 0) is a groupoid.

(c) For any x,y € G, AF(zy) > AF(z) A A%(y) and AY(zy) >
AV () n AU (y).

Proposition 3.6. Let 0 #£ A € D(I)X. Then the followings are equiva-
lent:
(a) If 70" is associative in G, then so is "o
Tr,YMm, 2N € A,
zr o (ym o zn) = (L oym) o 2N.
(b) If 70” is commutative in G, then so is 70” in A, i.e., for any
rr,ym € A,
LLOYM = YM © XL-
(c) If 70" has an identity e € G, then
e1oxy =x =xr,0e1 Vry, € A.

7

in A, i.e., for any

From Proposition 3.5, we can define an IVGP in G as follows.
Definition 3.4’. An interval-valued fuzzy set A in G is called an interval-
valued fuzzy subgroupoid(in short, IVGP) in G if

AL (zy) > AF(z) A AL(y) and AY (zy) > AY(2) A AY (y), Yo,y € G.

It is clear that 0, 1 € IVGP(Q).
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The following is the immediate result of Definition 3.4'.

Proposition 3.7. Let T € P(G), where P(G) denoted the set of all
subsets of G. Then A = [x7, x7r] € IVGP(G) if and only if T is a sub-
groupoid of G, where 7 is the charecteristic function of T.

Proposition 3.8. If {Ay}acr C IVGP(G), then () Ay € IVGP(G).

Proof. Let A= ()| Ay and let 2,y € G. Then -
AL (zy) = /\ajz’(:vy)
> A\ [Aﬁ;(;jFA AL ()] [ Since A, € IVGP(G)]
= ?G/F\ Ag@) A (N ALW)
= (aﬂ:Aé)(x) A (aﬁzAé)(y)

= Al (z) A A (y).
Similarly, we can see that AY(zy) > AY(x) A AY(y). Hence ﬂ A, €

ael
IVGP(G). ]

Proposition 3.9. Let f : G — G’ be a groupoid homomorphism, let
A e D)X and let B € D(I)Y.

(a) f(em oyn) = f(@)m o f(y)n, Vo, yn € IVFD(G).
(b) If f is surjective and A € IVGP(G), then f(A) € IVGP(G').
() If B € IVGP(G'), then f~1(B) € IVGP(G).

Proof. (a) Let zp,yn € IVP(G) and let z € G'. Then
f(zar oyn)®(2) = f((xy) e ane)(2) [By Proposition 3.2]

= \/ (@y) preane (2)
Z'=f(z)

_ MEANE i 2 = f(ay),
N 0 otherwise.

On the other hand,
(f(@)m o fy)n)"(2)
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B { \/ [f(x)pe(u) A fF(y)ne ()] for (u,v) € G’ x G'with 2z = uv,

0 otherwise.

0 otherwise.

_ {MLANL it == f(2)f(y),

Thus f(xpr oyN)L(z) =(f(x)pmof(y N)L( ). Similarly, we can see that
flear oyn)Y(2) = (f(@)ar o fFy)N)Y(2), V2 € G'. So f(xa oyn) =
f(xar) o flyn).

(b) Assume that f(A4) € IVGP(G’). Then 3 y,3’ € G’ such that

FA ') < F(A) () A FAR)
FA)  (yy') < F(AY (y) A FAY (Y.

or

Thus
VoAt < At \/ A
or f(2)=yy’ f(@)=y f(x
V A%<\ A% \/ AV (z
J(z2)=yy’ f(z)=y f(m’ Y

Since f is surjective, 3 x, 2’ € G such that f( )=y, f(z') =19, and
\/ AL(z) < AL(z) A AL(2)
=y

f(z)=yy’

or
\/  AY(z) < AY(z) A AV ().
f@)=yy
So
< \/ Alx) < Al(x) A AN
f2)=yy’
AV(za') < \/ AU ) < AY(z) A AV (2)).
fz)=y
This is a contradiction from the fact that A € IVGP(G).
(c) It can be easily seen that f~1(B) € IVGP(G) [ |

or

Definition 3.10[2]. A € D(I)X is said to have the sup- property if for

each T' € P(X), 3tg € T such that A(ty) = \/ AL (@) /\ AY (1)
teT teT
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Definition 3.10'[8]. A € IFS(X) is said to have the sup- property if
each T' € P(X), 3ty € T such that A(ty) = \/ At /\ (1))
teT teT

Remark 3.10. (a) If A € IX has the sup-property, A = [A, A] €
D(I)X[resp. A= (A, A°) € IFS(X)] has the sup-property.

(b) If A = [AL, AY] € D(I)X[resp. A = (pa,va) € IFS(X)] has
the sup-property, then A” and AY € I¥[resp. pa and vs¢ € IX] have
the sup-property.

Proposition 3.11. Let f : G — G’ be a groupoid homomorphism and
let A € D(I)X have the sup-property. If A € IVGP(G), then f(A) €
IVGP(G).
proof. Let y, y' € G'. Then we can consider four cases:

(i) f ()#Qandf ()#Q,

(if) f ( ) # @ and f~ ( ) =2,

(it}) f1(y) = @ and f1(y)) # 2,

(iv) f'(y) =@ and f~(y) = 2.
We prove only the case (i) and omit the remainders. Since A has the
sup-property, 3z € f~1(y) and z{, € ffl( ") such that

\/ AR, \/ AU

tef~1(y) tef-1
and
\/ AN, \/ AY ().
t'ef-1(y") t'ef~1(y")
Then
FAEyy) =\ Al(z) = AP (wozp) [Since f(zoxf) = f (o) f (xf)
zef~H(yy')

=yy']
> AL (z0) A AL()) [Since A € IVGP(G).]
(

VoAto)yn /A

tef~1(y) t'ef=1(y")
= f(A) (y) A F(AHY).
Similarly, we have f(A)Y(yy') > f(A)Y(y) A F(AY(Y). So f(A) €
IVGP(G). m

Definition 3.12. Let f : X — Y be a mapping and let A € D(I)X
Then A is said to be interval-valued fuzzy invariant(in short, IVF-
invariant) if f(z) = f(y) implies A(x) = A(y), i.e., A¥(x) = AF(y)
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and AY(z) = AY(y).
It is clear that if A is IVF-invariant, i.e., f~1(f(4)) = A.
The following is the immediate result of Definition 3.12.

Proposition 3.13. Let f : X — Y be a mapping and let A = {A €
D(I)X : A is IVF-invariant and has the sup-property}. Then there is a
one-to-one correspondence between A and D(I)'™/ where Imf denotes
the image of f

The following is the immediatd result of Propositions 3.11 and 3.13.

Corollary 3.13. Let f : G — G’ be a groupoid homomorphism and let
A ={A € IVGP (G) : A is IVF-invariant and has the sup-property}.
Then there is a one-to-one correspondence between 4 and IVGP (Imf).

4. Interval-value fuzzy subgroups

Definition 4.1[4]. Let A be an IV F's in a group G. Then A is called
an interval-valued fuzzy subgroup (in short, IVG) in G if it satisfies
the conditions : For any z,y € G,

(i) AL(ay) > A%(x) A AE(y) and A7 (zy) > AV (z) A AU (y)

(ii) Al(z71) > AL (x) and AY(z71) > AY(x)

We will denote the set of all IVGS of G as IVG(G).
Example 4.1. Consider the additive group (Z, +). We define a mapping

A =[AL AY]:Z — D(I) as follows : For each n € Z.
A(0) = [A%(0), AY(0)] = [1,1],

and
[%, %], if n is odd,
Aln) = [A¥(n), AV ()] ={ 2]
[3’ S]’ if n is even.

Then clearly A € D(I)%. Moreover, A satisfies all the conditions of Def-
inition 4.1. So A € IVG(Z). [ |
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Remark 4.1. (a) If A € FG(G), then A = [4, A] € IVG(G), where
FG(G) denotes the set of all fuzzy groups in G.
(b) If A € IVG(G), then AL, AU € FG(G) and (AL, AUY) € IFG(G).
(c) If A € IFG(G), then [pa,v] € IVG(G).

The following two results can be easily proved from definition 4.1,
Propositions 3.7 and 3.8.

Proposition 4.2. Let G be a group and let H C G. Then H is a
subgroup of G if and only if [xz, xu] € IVG(G).

Proposition 4.3. Let {A,}aer C IVG(G). Then ﬂ A, € IVG(G).
acl

The followings can be easily seen from Definitions 3.1 and 4.1.

Proposition 4.4. Let G be group and let A € D(I)%. If A € IVG(G),
then Ao A = A.

Proposition 4.5. Let A, B € IVG(G). Then Ao B € IVG(G) if and
only if Ao B = Bo A.

Result 4.A [4, Proposition 3.1]. Let A be an IVG in a group G.

(a) A(z7Y) = A(x),Vx € G.

(b) AL(e) > AL(x) and AY(e) > AY(x),Vx € G, where e is the
identity of G.

Result 4.B [4, Proposition 3.2]. Let A be an IVFS in a group G.
Then A is an IVG in G if and only if A(zy~!) > AX(z) A AL(y) and
AV(zy1) > AV(z) A AU (y), Y,y € G,

Proposition 4.6. If A € IVG(G), then G4 = {z € G : A(z) = A(e)}
is a subgroup of G.

Proof. let z,y € G4. Then

Al(zy™) > AM(x) A ARy

= AL(z) A A%(y) [ By Result 4.A |

= Al(e) A A (e) [ Since z,y € G4 |

= AL(e).
Similarly, we have AY(xy~!) > AY(e), On the other hand, by Result
4.A, it is clear that A% (zy=1) < AL(e) and AY(xy~1) < AY(e), thus
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A(zy~!) = A(e). So 2y~! € G4. Hence G4 is a subgroup of G. |

Proposition 4.7. let A € IVG(G). If A(zy~!) = A(e) for any =,y € G,
then A(z) = A(y).

Proof. Let z,y € G. Then
Al(z) = A((zyy)
> Al (zy=1) A AP (y) [ Since A € IVG(G)]
= A%(e) A A%(y) [ By the hypothesis |
= AL(y). [ By Result 4.A. ]
On the other hard, by Result 4.A, A*(z~!) = A'(z). Then
AL(y) = AX((ya~ "))
> Al (yz=') A A ()
=AL((yz=1)71) A Al (2) [ By Result 4.A. ]
—AL(zy) n AL(z)
=Al(e) N AE(z)
=Al(2).
Similarly, we have AY(z) = AY(y). Hence A(x) = A(y). [ |

Corollary 4.7-1. Let A € IVG(G). If G4 is a normal subgroup of G,
then A is constant on each coset of G 4.

Proof. Let a € G and let x € aG4. Then dy € G4 such that
r = ay. Since G4 is normal, za~! € G4. Thus, by the definition
of Ga, A(xa™') = A(e). By proposition 4.7, A(x) = A(a). So A is
constant on aG4 VYa € G. Similarly, we can see that A is constant on
G aa Ya € G. This completes the proof. |

Let H be a subgroup of G. Then the number of right [resp. left]
cosets of H in G is called the index of H in G and denoted by [G : H].
If G is a finite group, then there can be only a finite number of distinct
right [resp. left] cosets of H; hence the index [G : H] is finite. If G is an
infinite group, then [G : H| may be either finite or infinite.

Corollary 4.7-2. Let A € IVG(G) and let G4 be normal. If G4 has a
finite index, then A has the sup property.

Proof. Let T C G. Since G4 has finite index, let the index [G :
G 4| = n, say A= {a1G 4, ,a,G 4}, where a; € G(i = 1,--- ,n) and
a;GaNa;jGa =0 for any i # j. Let t € T. Since G =JA =}, a;Gi,



Interval-Valued Fuzzy Subgroups and Rings 607

there exists ani € {1,--- ,n} such that ¢t € a;G4. Since G 4 is normal, by
Corollary 4.7-1, A(t) = A(a;) on a;G 4, say AL(t) = a; and AY(t) = 3;,
where oy, 5; € I and o; < (3;. Thus there exists a g € T such that
AL(tn) = Vyep AL(1)= iy 0 and AV (t9) = \/,ep AV(1) = V2o B
Hence A has the sup property. |

Proposition 4.8. A group G cannot be the union of two proper IVGs.

Proof. Let A and B be proper IVGs of a group G such that AUB = 1,
A#1and B# 1. Since AUB = (Al v BY, AV v BY), AL(2) v B (2)
=1and AY(2) v BY(x) =1, Vo € X. Then AX(z) =1 or BF(z) =1
and AY(z) = 1 or BY(z) = 1. Since A #1 and B # 1, AF(z) # 1
or AV(z) # 1 and B¥(x) # 1 or BY(x) # 1. In either cases, this is a
contradiction. This completes the proof. |

Proposition 4.9. If A is an IVGP of a finite group G, then 4 € IVG(G).

Proof. Let x € G. Since G is finite, z has the finite order, say n, Then
2™ = e, where e is the identity of G. Thus 2=! = 2"~!. Since A is an
IVGP of G,

AL(afl) — AL(xnfl) — AL(xYHZx) > AL(:U)
and

AY(z71) = AV (zn 1) = AY (2" 22) > AY(2).
Hence A € IVG(G). [ |

Proposition 4.10. Let A be an IVG of a group G and let x € G. Then
A(zy) = A(y), for each y € G if and only if A(z) = A(e).

Proof. (=):Suppose A(xy) = A(y) for each y € G. Then clearly
A(z) = A(e).

(«=):Suppose A(z) = A(e). Then, by Result 4.A, AX(y) < A(x) and
AY(y) < AY(z) for each y € G. Since A is an IVG of G, Then A% (zy) >
Al (z) A AF(y) and AY(zy) > AY(2) v AY(y). Thus AX(zy) > AL(y)
and AY (xy) > AY(y) for each y € G.

On the other hand, by Result 4.A,

Al(y) = AM(z7 ay) > Al (2) A AF(zy)

and

AY(y) = AV (" tay) = AY(2) A AY (zy).
Since Al(z) > AL(y) for each y € G, AL(x) A AF(zy) = AF(zy) and
AV(x) A Al (zy) = AY(zy). So Al(y) > AF(zy) and AY(y) > AY(xy)
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for each y € G. Hence A(zy) = A(y) for each y € G. [

Proposition 4.11. Let f : G — G’ be a group homomorphism, let A €
IVG(G) and let B € IVG(G’). Then the following hold:

(a) If A has the sup property, then f(A) € IVG(G’).

(b) f~1(B) € IVG(G).

Proof. (a) By Proposition 3.11, since f(A) € IVGP(G) it i enough
to show that f(A)"(y~") > f(A)"(y) and f(A)Y(y!) = f(A ) (y) for
each y € f(G).

Let y € f(G). Then ¢ # f~(y) C G. Since A has the sup property,
there exists an z9 € f~1(y) such that AX(zg) = Vief1() AL(t) and
AY(20) = Ve p-105) AV (1)

Thus

tef~t(y=")
and
FAY =\ AT = AVt = AV () = F(A)(y)
tef~t(y=1)

Hence f(A) € IVG(G).

(b) By proposition 3.9, since f~1(B) € IVGP(G), it is enough to show
that f~'(B)"(z7") > f~(B)"(z) and f~1(B)Y(z7") > f~1(B)Y(x) for
each z € G.

Let z € G. Then

fHB) (= *1) BY(f(z71)) = BX(f(2)™")

dZ B (f(x)) = f~1(B)"(=)

fUB)Y(e7h) = BY(f(z71) = BY(f(x) )

> BV (f(2) = £ (B)" (0)

Thus f~!(B) € IVG(G). This completes the proof. [ |

Proposition 4.12. Let G, be the cyclic group of prime order p. Then
A € IVG(G,) if and only if AL(x) = AL(1) < AL(0) and AY(z) =
AY(1) < AY(0) for each 0 # = € G,
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Proof. (=) : Suppose A € IVG(G,) and let 0 # x € G)p. Then
Al(zy) > AX(2)AAL(y) and AY (zy) > AY () AAY (y) for any x,y € G).
Since G, is the cyclic group of prime order p,Gp = {0,1,2,--- ,p — 1}.
Since z is the sum of 1’s and 1 is the sum of 2’s, A" (z) > A¥(1) > A¥(x)
and AY(z) > AY(1) > AY(zx). Thus AX(z) = AF(1) and AY(z) =
AY(1). Since 0 is the identity element of G, AL (z) < AL(0) and AY (z) <
AY(0). Hence the necessary conditions hold.

(<) : Suppose the necessary conditions hold and let z,y € G),. Then
we have four cases : (i)z # 0,y # 0 and z =y, (ii) x # 0,y = 0, (iii)
x=0,y#0, (iv) z # 0,y # 0 and x # y.

Case(i) Suppose x # 0,y # 0 and = y. Then, by the hypothesis,
Al() = Ab(y) = AL(1) < AK(0) and AV(z) = AU(y) = AV(1) <
AY(0). So AL(zx —vy) = AL(0) > AL(x) A AL(y) and Al(z — y) >
AY(z) A A (y).

Case(ii) Suppose x # 0 and y = 0. Since x —y # 0, by the hypothesis,
Aba —y) = AL(x) = A1) < AL(0) = AL{y) and AV(x - y) —
AY(z) = AY(1) < AY(0) = AY(y). So AL(x —y) > AF(z) A AL(y) and
AV(z—y) > AV(z) A AV (y).

Case(iii) is the same as Case(ii).

Case(iv) Suppose =z # 0,y 7&
the hypothesis, AX(z — y)

0 and = 7é y. Since x —y # 0, by
= Ab(z) = AM(y) = AM(1) < A¥(0) and
AV(z — ) = AU (z) = AU(y) < AV(0). So Al(z — y) > AL(z) A AL (y)
and AY(z —y) > AY(z) A AY(y). In all, Al(z —y) > Al(x) A AL(y)
and AY(z—y) > AY(2) AAY(y). Hence, by Result 4.B, A € IFG(G,). B

Definition 4.13. Let G be a groupoid and let A € IVS(G). Then A is
called an:

(1) interval-valued fuzzy left ideal (in short, IV LI) of G if for any
2,y € G, AM(zy) > AF(y) and AY(zy) > AY(y).

(2) interval-valued fuzzy right ideal (in short, IVRI) of G if for
any x,y € G, Al (zy) > A¥(x) and AY (xy) > AY(z).

(3) interval-valued fuzzy ideal (in short, IVI) of G if it is both an
IFLI and an IFRI.

We will denote the set of all IVLIs[resp. IVRIs and IVIs| of a grou-
piod G as IVLI(G)]resp. IVRI(G) and IVI(G)].

It is clear that A € IVI(G) if and only if and only if for any z,y €
G, AL (zy) > A¥(x)v A¥(y) and AY (zy) > AY(x)Vv AU (y). Moreover, an
IFI(resp. IFLI, IFRI) is an IVGP of G. Note that for any A € IVGP(G),
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we have AF(z") > AL(x) and AY(2") > AY(x) for each z € G, where
z™ is any composite of z’s.

Proposition 4.14. The IVLIs (resp. IVLIs, IVRIs) in a group G are
just the constant mappings.

Proof. Suppose A is an constant mapping and let x,y € G. Then
A(zy) = A(z) = A(y). Thus A € IVI(G).

Now suppose A € IVLI(G). Then Al(xy) > A*(y) and AU(acy) >
AY(y) for any x,y € G. In particular, AX(z) > AL(e) AY(z) >
AY(e) for each z € G. Moreover, AF(e) = AL(z~l2) > L(x) and
AY(e) = AY(x7x) > AY(z) for each € G. So A(z) = A(e) for each
x € G. Hence A is a constant mapping. [ |

Definition 4.15. Let A be an IVFS in a set X and let A\, u € I with
A < p. Then the set AP = {z € X : Al(z) > X and AY(x) > p} is
called a [\, ul-level subset of A.

Proposition 4.16. Let A be an IVG of a group G. Then, for each
(A p) € I x I such that A < pa(e),pn < va(e) and A < pu, AN is a
subgroup of G.

Proof. Clearly, AN £ (. Let 2,y € AM#. Then AL (z) >
pwand AX(y) > X\, AY(y) > p. Since A € IVG(G), AL (xy)
AL(y) > X and AY(zy) > AY(z) A AV(y) > p. Thus AL(zy) an
AY(zy) > p. So zy € AP#H. On the other hand, A*(z~1) > AL(z) >
and AV(z71) > AY(z) > p. Thus AX(z=YHA and AY(z71) > p. So
z~t e APMH. Hence AP is a subgroup of G. [ |

v }’

Proposition 4.16. Let A be an IVS in a group G such that AP is a
subgroup of G for each (), ) € I x I such that A < A%(e),u < AY(e)
and A\ < . Then A is an IVG of G.

Proof. For any z,y € G, let A(x) = [t1,s1] and let A(y) = [t2, s2].
Then clearly, z € A5 and y € Alf2:52]. Suppose t; < to and s; < so.
Then Al252l ¢ Aol Thus y e A5l Since A1 is a sub-
group of G,zy € Al Then AL(zy) > t; and AY(zy) > s1. So
Al (zy) > Al(x) A AF(y) and AY(zy) > AY(x) A AY(y). For each
z € G, let A(zy) = [\, p]. Then z € AP, Since AMH is a subgroup of
G,z ' e AP So Al(z~1) > Al(x) and AY(z71) > AY. Hence A €
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IVG(G). ]

5. Interval-value fuzzy normal subgroups

Definition 5.1. Let A € IVG(G). Then A is called an interval-
valued fuzzy

normal subgroup( in short, IVNG) of G if A(xy) = A(yx), for any
z,y € G.

We will denote the set of all IVNGs of a group G as IVNG(G). It is
clear that if G is abelian, then A € IVNG(G), VA € IVG(G).

Example 5.1. Consider the general linear group of degree n, GL(n, R).
Then clearly, GL(n, R) is a non abelian group. Let us define a mapping
A:GL(n,R) — D(I) as follows: for any I,, # M € GL(n, R), where I,
is the unit matrix,

AllL,) =1,
1. . . .
— if M is not a triangular matrix,
Ab() =4 °
3 if M is a triangular matrix
and
2. . . .
— if M is not a triangular matrix,
AV =4 3
L. . . .
3 if M is a triangular matrix
Then we can easily see that A is an IVNG of GL(n, R). n

The following is the immediate result of Definitions 3.1 and 5.1.

Proposition 5.2. Let A € D(I)¢ and let B € IVNG(G). Then
AoB=BoA.

Proposition 5.3. Let A € IVNG(G). If B € IVG(G), then so is Bo A.
Proof. By Definitions 3.1 and 3.4, it can be easily seen that Bo A €

IVGP(G). Thus it is sufficient to show that (Bo A)*(z~!) > (BoA)l(x)
and (Bo A)Y(z™1) > (Bo A)Y(z) for each z € G.
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Let z € G. Then
(BoA):(z7h) = \/ [B"(y) n A"(2)]

yz=z~1

=V BHeTHHAAMEH T

>\ BHY) A AR

— (Ao B)l(z) = (B o A)-(x).
Similarly, we have (B o A)Y(z™!) > (B o A)Y(x) for each x € G. Hence
BoAe IVG(Q). n

Corollary 5.3. Let A, B € IVNG(G). Then Ao B € IVNG(G).

Proof. By Proposition 4.5, Ao B € IVG(G). Let a,b € G. Then
there exists z,y € G such that ab = zy. Since b = a lay,ba =
(a 'za)(a"lya). Since A, B € IVNG(G),

(Ao B)(ab) = [(Ao B):(ab), (Ao B)Y (ab)]

=1\ (A"@2) A B (), \/ (A7) A BY(y))]

ab=xy ab=xy
= V (A*(a" wa) A BH(a"ya)),
ba=(a—1za)(a"lya)
\/ (AY(atza) A BY (a"ya)]

ba=(a—1za)(a=1ya)
= [(A o B)E(ba), (A o B)Y (ba)]
— (Ao B)(ba).
Hence Ao B € IFNG(G). [ |

Proposition 5.4. If A € IVNG(G), then G 4 is a normal subgroup of G.

Proof. By Proposition 4.6, G4 is a subgroup of G. Moreover G 4 # ().
Let x € G4 and let y € G. Then
Al (yay™) = A ((ya)a™!) = AM(y~ (yo)) = AM(z) = A% (e)
and
AV (yzy™") = AY((ya)a™") = AY(y " (yx)) = AV (2) = AY(e)
Thus yzy~' € G4. Hence G4 is a normal subgroup of G. |

It is clear that if A is a (usual) normal subgroup of G, then A =
[, x4] € IVNG(G) and G4 = A.
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Definition 5.5. Let A € IVNG(G). Then the quotient group G/G4 is
called the interval-valued fuzzy quotient subgroup (in short, IVQG)
of X with respect to A.

Now let 7 : G — G /G 4 be the natural projection.

Proposition 5.6. If A € IVNG(G) and B € D(I)%, then 7—!(n(B)) =
GaoB.

Proof. Let x € G. then
N (m(B)! = n(b)*(n(x))
= \/ B'w= \ B
m(y)=n(z) ry~leGa
and
mH(m(B))Y =7 (b)Y (n(x))

=V Bw= \/ BY.

m(y)==(z) ry~leGy
On the other hand
(GaoB)i(x)= \/ [Gaz) A B ()= \/ B"w)
Y= z=zy~leG4y
and
(GaoB)Y(x)= \/ [Gaz)AB ()] = \/ BY).
TYy=w z=xy~1eGy

Thus 7~ (7(b))(z) = (G o B)(z) for each x € G. Hence 7~ !((B))
G0 B.

6. Interval-valued fuzzy subrings and ideals

Definition 6.1. Let (R, +,-) be a ring and let 0 # A € D(I)®. Then
A is called an interval-valued fuzzy subring (in short, IV R) in R if it
satisfies the following conitions:

(i) A is an IVG in R with respect to the operation "+ (in the sense
of Definition 4.1).

(ii) A is an IVGP in R with respect to the operation ”-” (in the sense
of Definition 3.4 or Definition 3.4).

We will denote the set of all IVRs of R as IVR(R).
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Example 6.1. Consider the ring (Zs,+, ), where Zy = {0,2}. We
define the mapping A : Zs — D(I) as follows: A(0) = [0.2,0.7] and
A(1) =[0.5,0.6]. Then we can see that A € IVR(Zs). [ |

Remark 6.1. (1)If Ais a fuzzy subring of a ring R, then [A, A] eIVR(R)
(2)If A € IVR(R), then A* and AV are fuzzy subrings of R.

The following is the immediate result of Definition 3.4’ and Result
4.B.

Proposition 6.2. Let R be a ring and let 0 # A € D(I)®. Then A €
IVR(R) if and only of for any z,y € R,
() A (z —y) > Al(z) A AL(y) and AV (z —y) > AV () A AV (3).
(i) A () > AL () A AL(y) and AV (zy) > AV () A AV ().

The following is easily seen.

Proposition 6.3. Let R be a ring. Then A is a subring of R if and
only if [xa, x4] € IVR(R).

Definition 6.4. Let R be a ring and let 0 # A € IVR(R). Then A is
called an:

(1) interval-valued fuzzy left ideal (in short, IV LI) in Rif A" (zy) >
AL (y) and AY(zy) > AY(y) for any z,y € R.

(2) interval-valued fuzzy right ideal (in short, IV RI) in X if AL (xy) >
AF(z) and AY (xy) > AY(z) for any =,y € R.

(3) interval-valued fuzzy ideal (in short, IFI) in X if it both an
IVLI and an IVRI in R.

We will denote the set of all IVLIs [resp. IVRIs and IVIs] of a ring
R as IVLI(R)[resp. IVRI(R) and IVI(R)).

Example 6.4. Consider the ring (Z4,+, ), where Z4 = {0,1,2,3}. We
define the mapping A : Z4 — D(I) as follows: A(0) =[0.2,0.8], A(1) =
[0.3,0.6] = A(3), and A(2) = [0.4,0.5]. Then we can easily see that A €
IVI(Zy). n

Remark 6.4. (1) If A is a fuzzy [resp. left, right] ideal of a ring R,
then [A, A¢] € IVI(R) [resp. IVLI(R) and IVRI(R)].
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(2) If A € TVI(R) [resp. IVLI(R) and IVRI(R)], then A" and AY are
fuzzy [resp. left and right] ideals of R.

The following can be directly verified.

Proposition 6.5. Let R be a ring and let 0 # A € D(I)®. Then A is
an IVI[resp. IFLI and IFRI] of R if and only of for any =,y € R,
(i) AP (2 —y) = A¥(z) A AP (y) and AY (2 —y) > AY(2) v AY(y).
(ii) AF(zy) > Al(x) v AF(y) and AY(xy) > AY(z) v AY(y)[resp.
Al(zy) > AP (y) and AY (zy) > AY(y), A% (zy) > A*(z) and AY (zy) >
AY(2))].
The following is easily seen.

Proposition 6.6. Let R be aring. Then A is an ideal [resp. a left ideal
and a right ideal] of R if and only if [y, xa] € IVI(R) [resp. IVLI(R)
and IVRI(R)].

Proposition 6.7. Let R be a skew field (also division ring) and let
0 #£ A € D(I)®. Then A is an IFI(IFLIL, IFRI) of R if and only
if AF(z) = AF(e) < AF(0) and AY(z) = AY(e) > AY(0) for any
0 # x € R, where 0 is the identity of R for "+” and e is the iden-
tity of R for ”.”.

Proof. (=): Suppose A € IVLI(R) and let 0 # x € R. Then
Al (z) = Al (ze) > AF(e), A¥(e) = AF(z~1z) > Al (2)
and
AY(z) = AY(xe) > AY(e), AV(e) = AY(z712) > AY(2).
Thus A(x) = A(e). On the other hand,
AL(0) = Al(e —e) > Al(e) A AL (e) = AL(e)
and
AY(0) = AY(e —e) > AU(e) A AY(e) = AY(e).
So Al(e) < A%(0) and AY(e) < AY(0). Hence the necessary conditions
hold.

(<): Suppose the necessary conditions hold. Let x € R. Then we
have four cases:

i)z #0,y#0andz#y (i) x #0,y#0and x =y
(iii) x # 0,y =0 (iv) x = 0,y # 0.
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Case (i) Suppose x # 0,y # 0 and x # y. Then
ALz —y) = AL(e) > AL(x) A AV(y),

AV(w - y) = AV(e) > AV () A AV ()

and

Al(zy) = Al(e) > Al(w) v AL(y),
AV(y) = AV (e) > AV(z) v AU(y).

Case(ii): Suppose z # 0,y # 0 and z = y. Then
Al(z = y) = AL(0) > Ab(z) A AL(y),

AV(z — y) = AU(0) > AV () A AV ()
and
A-(y) = AP(e) = A(x) v AL(y),
AY(zy) = AY(e) = AY(z) v AY (y).

Case(iii): Suppose x # 0 and y = 0. Then
ALz — y) = A(z) = AF(e) = Al(x) A A (y).
AV(w — y) = AV (z) = AV(0) = AV (2) A AV (y)

and
Al(zy) = A(0) > AL (z) v AV(y),
AV (y) = AV(0) = AV () v AV (y).
Case(iv): It is similar to case(iii).
In all, A € IVI(R). This completes the proof. |

Remark 6.8. Proposition 6.5 shows that an IVLI(IVRI) is an IVI in a
skew field.

The following gives a characteristic of a (usual) field by an IVI.

Proposition 6.9. Let R be a commutative ring with a unity e. If for
A € IVI(R), AF(z) = A¥(e) < AL(0) and AY(x) = AY(e) < AY(0) for
each 0 # x € R, then R is a field.

Proof. Let A be an ideal of R such that A # R. Then clearly A =
[xa,x4a] € IVI(R) such that A # 1. Thus there exists y € R such that
y ¢ A. Thus xa(y) = 0. By the hypothesis, xa(z) = xa(e) < xa(0),
for each 0 # z € X. So x4(0) =1, i.e.,A={0}. Hence R is a field. W
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