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INTERVAL-VALUED FUZZY SUBGROUPS AND RINGS

Hee Won Kang∗ and Kul Hur∗∗

Abstract. We introduce the concepts of interval-valued fuzzy sub-
groups [resp. normal subgroups, rings and ideals] and investigate
some of it’s properties.

1. Introduction

In 1986, Atanassuv[1] introduced the concept of intuitionistic fuzzy
sets as a generalitation of fuzzy sets introduced by Zadeh[13], After
then, Banerjee and Basnet[3], and Hur et. al[8, 9] applied it to algebra.
Çoker[5, 6] studied intuitionistic fuzzy topological spaces.

In 1975, Zadeh[14] suggested the notion of interval-valued fuzzy sets
as another generalization of fuzzy sets. After that time, Biswas[4] ap-
plied it to group theory, and Gorzalczany[7] suggested a method of in-
ference in approximate reasoning by using interval-valued fuzzy sets.
Moreover Montal and Samanta[12] introduced the concept of topology
of interval-valued fuzzy sets and investigate some of it’s properties. Re-
cently, Hur et. al[10] studies interval-valued fuzzy relations in the sense
of a lattice theory. In this paper, we introduce the concept of interval-
valued fuzzy subgroups [resp.normal subgroup, rings and ideals] and
investigate some of it’s properties.

2. Preliminaries
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In this section, we list some concepts and results related to interval-
valued fuzzy set theory and needed in next sections.

Let D(I) be the set of all closed subintervals of the unit interval [0, 1].
The elements of D(I) are generally denoted by capital letters M,N, · · ·,
and note that M = [ML,MU ], where ML and MU are the lower and
the upper end points respectively. Especially, we denoted , 0 = [0, 0], 1
= [1, 1], and a = [a, a] for every a ∈ (0, 1), We also note that

(i) (∀M,N ∈ D(I)) (M = N ⇔ ML = NL,MU = NU ),
(ii) (∀M,N ∈ D(I)) (M = N ≤ ML ≤ NL,MU ≤ NU ).

For every M ∈ D(I), the complement of M , denoted by MC , is defined
by MC = 1−M = [1−MU , 1−ML](See[12]).

Definition 2.1[7,14]. A mapping A : X → D(I) is called an interval -
valued fuzzy set(is short, IVFS ) in X, denoted by A = [AL, AU ], if
AL, AL ∈ IX such that AL ≤ AU , i.e., AL(x) ≤ AU (x) for each x ∈ X,
where AL(x)[resp AU (x)] is called the lower [resp upper ] end point of x
to A. For any [a, b] ∈ D(I), the interval-valued fuzzy A in X defined by
A(x) = [AL(x), AU (x)] = [a, b] for each x ∈ X is denoted by ˜[a, b] and if
a = b, then the IVFS ˜[a, b] is denoted by simply ã. In particular, 0̃ and 1̃
denote the interval -valued fuzzy empty set and the interval -valued fuzzy
whole set in X, respectively.

We will denote the set of all IVFSs in X as D(I)X .It is clear that
set A = [A,A] ∈ D(I)X for each A ∈ IX .

For sets X,Y and Z, f = (f1, f2) : X → Y × Z is called a complex
mapping if f1 : X → Y and f2 : Y → Z are mappings.

Definition 2.1′ [1,9]. Let X be a set. A complex mapping A =
(µA, νA) : X → I× I is called a intuitionistic fuzzy set(in short, IFS ) in
X if µA(x)+ νA(x) ≤ 1for each x ∈ X, where the mappings µA : X → I
and νA : X → I denote the degree of membership(namely µA(x)) and
the degree of nonmembership(namely νA(x)) of each x ∈ X to A, respec-
tively. in particular, 0∼ and 1∼ denote the intuitionistic fuzzy empty set
and intuitionistic fuzzy whole set in X defined by 0∼(x) = (0, 1) and
1∼(x) = (1, 0) for each x ∈ X, respectively.

We will denoted the set of all the IFSs in X as IFS(X).



Interval-Valued Fuzzy Subgroups and Rings 595

Result 2.A[2, Lemma 1]. We define two mappings f : D(I)X → IFS(X)
and g : IFS(X) → D(I)X as follows, respectively:

(i) f(A) = (AL, 1−AU ) , ∀A ∈ D(I)X ,

(ii) g(B) = [µB, 1− νB] , ∀B ∈ IFS(X).

In this case , we write as f(A) = A∗ and g(B) = B∗ , respectively. Then

(a) g ◦ f = 1D(I)X , i .e., g(f(A)) = A, ∀A ∈ D(I)X .

(a) f ◦ g = 1IFS(X), i .e., f(g(B)) = B, ∀B ∈ IFS(X).

Definition 2.2[7]. An IVFS A is called an interval -valued fuzzy point(in
short, IVFP) in X with the support x ∈ X and the value [a, b] ∈ D(I)
with b > 0, denoted by A = x[a,b], if for each y ∈ X

A(y) =
{ [a, b] if y = x,

0 otherwise

In particular, if b = a, then x[a,b] is denoted by xa.

We will denote the set of all IVFPs in X as IVFP(X) .

Definition 2.3 [7]. Let A,B ∈ D(I)X and let {Aα}α∈Γ ⊂ D(I)X .
Then:

(i) A ⊂ B iff AL ≤ BL and AU ≤ BU .

(ii) A = B iff A ⊂ B and B ⊂ A.

(iii) AC = [1−AU , 1−AL].

(iv) A ∪B = [AL ∨BL, AU ∨BU ].

(iv)′
⋃

α∈Γ

Aα = [
∨

α∈Γ

AL
α,

∨

α∈Γ

AU
α ].

(v) A ∩B = [AL ∧BL, AU ∧BU ].

(v)′
⋂

α∈Γ

Aα = [
∧

α∈Γ

AL
α,

∧

α∈Γ

AU
α ].
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Result 2.B[7, Theorem 1]. Let A, B,C ∈ D(I)X and let {Aα}α∈Γ ⊂
D(I)X . Then:

(a) 0̃ ⊂ A ⊂ 1̃.
(b) A ∪B = B ∪A , A ∩B = B ∩A.
(c) A ∪ (B ∪ C) = (A ∪B) ∪ C , A ∩ (B ∩ C) = (A ∩B) ∩ C.
(d) A, B ⊂ A ∪B , A ∩B ⊂ A,B.
(e) A ∩ (

⋃

α∈Γ

Aα) =
⋃

α∈Γ

(A ∩Aα).

(f) A ∪ (
⋂

α∈Γ

Aα) =
⋂

α∈Γ

(A ∪Aα).

(g) (0̃)c = 1̃ , (1̃)c = 0̃.
(h) (Ac)c = A.
(i) (

⋃

α∈Γ

Aα)c =
⋂

α∈Γ

Ac
α , (

⋂

α∈Γ

Aα)c =
⋃

α∈Γ

Ac
α.

Definition 2.4[7]. Let A ∈ D(I)X and let xM ∈ IVFP(X). Then:
(i) The set {x ∈ X : AU (x) > 0} is called the support of A and is

denoted by S(A).
(ii) xM said to belong to A, denoted by xM ∈ A, if ML ≤ AL(x)

and MU ≤ AU (x) for each x ∈ X.

It is obvious that A =
⋃

xM∈A

xM and xM ∈ A if and only if xML ∈ AL

and xMU ∈ AU .

Definition 2.5[7]. Let f : X → Y be a mapping, let A ∈ D(I)X and
let B ∈ D(I)Y . Then:

(i) the image of A under f , denoted by f(A), is an IVFS in Y
defined as follows: For each y ∈ Y ,

f(A)L(y) =





∨

y=f(x)

AL(x) if f−1(y) 6= ∅,

0 otherwise

and

f(A)U (y) =





∨

y=f(x)

AU (x) if f−1(y) 6= ∅,

0 otherwise.
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(ii) the preimage of B under f , denoted by f−1(B), is an IVFS in
Y defined as follows: For each y ∈ Y ,

f−1(B)L(y) = (BL ◦ f)(x) = BL(f(x))
and

f−1(B)U (y) = (BU ◦ f)(x) = BU (f(x))
.

It can be easily seen that f(A) = [f(AL), f(AU )] and f−1(B) =
[f−1(BL), f−1(BU )].

Result 2.C[7, Theorem 2]. Let f : X → Y be a mapping and g : Y → Z
be a mapping. Then:

(a) f−1(Bc) = [f−1(B)]c , ∀B ∈ D(I)Y .
(b) [f(A)]c ⊂ f(Ac) , ∀A ∈ D(I)Y .
(c) B1 ⊂ B2 ⇒ f−1(B1) ⊂ f−1(B2), where B1, B2 ∈ D(I)Y .
(d) A1 ⊂ A2 ⇒ f(A1) ⊂ f(A2), where A1, A2 ∈ D(I)X .
(e) f(f−1(B)) ⊂ B, ∀B ∈ D(I)Y .
(f) A ⊂ f(f−1(A)), ∀A ∈ D(I)Y .
(g) (g ◦ f)−1(C) = f−1(g−1(C)), ∀C ∈ D(I)Z .
(h) f−1(

⋃

α∈Γ

Bα) =
⋃

α∈Γ

f−1Bα, where {Bα}α∈Γ ∈ D(I)Y .

(h) f−1(
⋂

α∈Γ

Bα) =
⋂

α∈Γ

f−1Bα, where {Bα}α∈Γ ∈ D(I)Y .

3. Interval-valued fuzzy subgroupoids

Definition 3.1. Let (X, ·) be a groupoid and let A,B ∈ D(I)X . Then
the interval -valued fuzzy product of A and B , denoted by A ◦ B, is an
IVFS in X defined as follows : For each x ∈ X,

(A◦B)(x) =





[
∨

yz=x

[AL(y) ∧BL(z)],
∨

yz=x

[AU (y) ∧BU (z)]] if yz = x,

0 otherwise.

Definition 3.1′[8]. Let X, ◦ be geoupoid and let A,B ∈ IFS (X ). Then
the intuitionistic fuzzy product of A and B, A ◦B, is defined as follow :
For any x ∈ X,
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µA◦B(x) =





∨
yz=x

[µA(y) ∧ µB(z)]] if ∃(y, z) ∈ X ×Xwith yz = x,

0 otherwise.

and

νA◦B(x) =





∧
yz=x

[νA(y) ∨ νB(z)] if ∃(y, z) ∈ X ×Xwith yz = x,

1 otherwise.

Remark 3.1. By Result 2.A, Definition 3.1 is reduced to Definition 3.1′
and the reverse holds.

Proposition 3.2. Let ”◦” be same as above, let xM , yN ∈ IVFp(X)
and let A,B ∈ D(I)X . Then:

(a) xM ◦ yN = (xy)M∩N .
(a) A ◦B =

⋃

xM∈A,yN∈B

xM ◦ yN .

Proof . (a) Let z ∈ X. Then

(xM ◦ yN )(z) =





[
∨

z=x′y′
(xL

M (x′) ∧ yL
N (y′)),

∨

z=x′y′
(xU

M (x′) ∧ yU
N (y′))]

if x′y′ = z,

0 otherwise.

=

{
[ML ∧NL,MU ∧NU ] if z = xy,

0 otherwise.

= (xy)M∩N

.
(b) Let C =

⋃

xM∈A,yN∈B

xM ◦ yN , i .e.,

C = [
∧

x
ML∈AL,y

NL∈BL

(xML ◦ yNL),
∧

x
MU∈AU ,y

NU∈BU

(xMU ◦ yNU )].
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For each z ∈ X, we may assume that ∃u, υ ∈ X such that uυ = z,
xM (u) 6= 0 and yN (v) 6= 0, without loss of generality. Then

(A ◦B)L(z) =
∨

z=uv

[AL(u) ∧BL(v)]

≥
∨

z=uv

(
∨

x
ML∈AL,y

NL∈BL

[xML(u) ∧ yNL(v)])

= (
⋃

x
ML∈AL,y

NL∈BL

xML ◦ yNL)

= CL(z).
Since uA(u) ∈ A and vB(v) ∈ B,

CL(z) =
∨

x
ML∈AL,y

NL∈BL

(
∨

z=uv

[xML(u) ∧ yNL(v)])

=
∨

z=uv

(
∨

x
ML∈AL,y

NL∈BL

[xML(u) ∧ yNL(v)])

≥
∨

z=uv

[uAL(u)(u) ∧ vBL(v)(v)]

=
∨

z=uv

[AL(u) ∧BL(v)]

= (A ◦B)L(z).
Thus (A◦B)L = CL. By the similar arguments, we have (A◦B)U = CU .
Hence

A ◦B =
⋃

x
ML∈AL,y

NL∈BL

xML ◦ yNL . ¥

The following is the immediate result of Definition 3.1.

Proposition 3.3. Let (X, ◦) be a groupoid, and let ”◦” be same as
above.

(a) if ”◦” is associative[resp. commutative] in X, the so is ”◦” in
D(I)X .

(b) if ”◦” is has an identity e ∈ X, then e1 ∈ IVFp(X) is an
identity of ”◦” in D(I)X , i .e., A ◦ e1 = A = e1 ◦A for each A ∈ D(I)X .

Definition 3.4. Let (G, ·) be a groupoid and let 0̃ = A ∈ D(I)X . Then
A is called an interval -valued fuzzy groupoid (in short, IVGP) in G if
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A ◦A ⊂ A, i .e., AL ◦AL ⊂ AL and AU ◦AU ⊂ AU .

We will denote the IVGPs in G as IVGP(G).

Remark 3.4. (a) If A is a fuzzy groupoid in a group G in the sense of
Liu[11], then A = [A,A] ∈ IVGP(G).

(b)If A ∈ IVGP(G), then AL, AU ∈ FGP(G) and A∗ ∈ IFGP(G),
where FGP(G)[resp. IFGP(G)] denoted the set of all fuzzy groupoids in
the sense of Liu[resp. the set of all intuitionistic fuzzy groupiods in the
sense of Hur et al.].

The followings are the immediate results of Definitions 3.1 and 3.4.

Proposition 3.5. Let (G, ·) be a groupoid and let 0̃ 6= A ∈ D(I)X .
Then the followings are equivalent:

(a) A ∈ IVGP(G).
(b) For any xM , yN ∈ A, xM ◦ yN ∈ A, i .e., (A, ◦) is a groupoid.
(c) For any x, y ∈ G, AL(xy) ≥ AL(x) ∧ AL(y) and AU (xy) ≥

AU (x) ∧AU (y).

Proposition 3.6. Let 0̃ 6= A ∈ D(I)X . Then the followings are equiva-
lent:

(a) If ”◦” is associative in G, then so is ”◦ ” in A, i .e., for any
xL, yM , zN ∈ A,

xL ◦ (yM ◦ zN ) = (xL ◦ yM ) ◦ zN .
(b) If ”◦” is commutative in G, then so is ”◦” in A, i .e., for any

xL, yM ∈ A,
xL ◦ yM = yM ◦ xL.

(c) If ”◦” has an identity e ∈ G, then
e1 ◦ xL = xL = xL ◦ e1 ∀xL ∈ A.

From Proposition 3.5, we can define an IVGP in G as follows.

Definition 3.4′. An interval-valued fuzzy set A in G is called an interval -
valued fuzzy subgroupoid(in short, IVGP) in G if

AL(xy) ≥ AL(x) ∧AL(y) and AU (xy) ≥ AU (x) ∧AU (y), ∀x, y ∈ G.

It is clear that 0̃, 1̃ ∈ IVGP(G).
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The following is the immediate result of Definition 3.4′.

Proposition 3.7. Let T ∈ P(G), where P(G) denoted the set of all
subsets of G. Then A = [χT , χT ] ∈ IVGP(G) if and only if T is a sub-
groupoid of G, where χT is the charecteristic function of T.

Proposition 3.8. If {Aα}α∈Γ ⊂ IVGP(G), then
⋂

α∈Γ

Aα ∈ IVGP(G).

Proof . Let A =
⋂

α∈Γ

Aα and let x, y ∈ G. Then

AL(xy) =
∧

α∈Γ

AL
α(xy)

≥
∧

α∈Γ

[AL
α(x) ∧AL

α(y)] [ Since Aα ∈ IVGP(G)]

= (
∧

α∈Γ

AL
α(x)) ∧ (

∧

α∈Γ

AL
α(y))

= (
⋂

α∈Γ

AL
α)(x) ∧ (

⋂

α∈Γ

AL
α)(y)

= AL(x) ∧AL(y).
Similarly, we can see that AU (xy) ≥ AU (x) ∧ AU (y). Hence

⋂

α∈Γ

Aα ∈

IVGP(G). ¥

Proposition 3.9. Let f : G → G′ be a groupoid homomorphism, let
A ∈ D(I)X and let B ∈ D(I)Y .

(a) f(xM ◦ yN ) = f(x)M ◦ f(y)N ,∀xM , yN ∈ IVFp(G).
(b) If f is surjective and A ∈ IVGP(G), then f(A) ∈ IVGP(G′).
(c) If B ∈ IVGP(G′), then f−1(B) ∈ IVGP(G).

Proof . (a) Let xM , yN ∈ IVP(G) and let z ∈ G′. Then
f(xM ◦ yN )L(z) = f((xy)ML∧NL)(z) [By Proposition 3.2]
=

∨

z′=f(z)

(xy)ML∧NL(z′)

=

{
ML ∧NL if z′ = f(xy),

0 otherwise.

On the other hand,
(f(x)M ◦ f(y)N )L(z)
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=





∨
z=uv

[f(x)ML(u) ∧ f(y)NL(v)] for (u, v) ∈ G′ ×G′with z = µν,

0 otherwise.

=

{
ML ∧NL if z = f(x)f(y),

0 otherwise.

Thus f(xM ◦yN )L(z) = (f(x)M ◦f(y)N )L(z). Similarly, we can see that
f(xM ◦ yN )U (z) = (f(x)M ◦ f(y)N )U (z), ∀z ∈ G′. So f(xM ◦ yN ) =
f(xM ) ◦ f(yN ).

(b) Assume that f(A) ∈ IVGP(G′). Then ∃ y, y′ ∈ G′ such that
f(A)L(yy′) < f(A)L(y) ∧ f(A)L(y′)

or
f(A)U (yy′) < f(A)U (y) ∧ f(A)U (y′).

Thus ∨

f(z)=yy′
AL(z) < (

∨

f(x)=y

AL(x)) ∧ (
∨

f(x′)=y′
AL(x′))

or ∨

f(z)=yy′
AU (z) < (

∨

f(x)=y

AU (x)) ∧ (
∨

f(x′)=y′
AU (x′)).

Since f is surjective, ∃ x, x′ ∈ G such that f(x) = y, f(x′) = y′, and∨

f(z)=yy′
AL(z) < AL(x) ∧AL(x′)

or ∨

f(z)=yy′
AU (z) < AU (x) ∧AU (x′).

So
AL(xx′) ≤

∨

f(z)=yy′
AL(z) < AL(x) ∧AL(x′)

or
AU (xx′) ≤

∨

f(z)=yy′
AU (z) < AU (x) ∧AU (x′).

This is a contradiction from the fact that A ∈ IVGP(G).
(c) It can be easily seen that f−1(B) ∈ IVGP(G) ¥

Definition 3.10[2]. A ∈ D(I)X is said to have the sup-property if for
each T ∈ P (X), ∃t0 ∈ T such that A(t0) = [

∨

t∈T

AL(t),
∧

t∈T

AU (t)].



Interval-Valued Fuzzy Subgroups and Rings 603

Definition 3.10′[8]. A ∈ IFS(X) is said to have the sup-property if
each T ∈ P (X), ∃t0 ∈ T such that A(t0) = (

∨

t∈T

µA(t),
∧

t∈T

νA(t))

Remark 3.10. (a) If A ∈ IX has the sup-property, A = [A,A] ∈
D(I)X [resp. A = (A,Ac) ∈ IFS (X )] has the sup-property.

(b) If A = [AL, AU ] ∈ D(I)X [resp. A = (µA, νA) ∈ IFS(X)] has
the sup-property, then AL and AU ∈ IX [resp. µA and νA

c ∈ IX ] have
the sup-property.

Proposition 3.11. Let f : G → G′ be a groupoid homomorphism and
let A ∈ D(I)X have the sup-property. If A ∈ IVGP(G), then f(A) ∈
IVGP(G′).
proof . Let y, y′ ∈ G′. Then we can consider four cases:

(i) f−1(y) 6= ∅ and f−1(y′) 6= ∅,
(ii) f−1(y) 6= ∅ and f−1(y′) = ∅,
(iii) f−1(y) = ∅ and f−1(y′) 6= ∅,
(iv) f−1(y) = ∅ and f−1(y′) = ∅.

We prove only the case (i) and omit the remainders. Since A has the
sup-property, ∃x0 ∈ f−1(y) and x′0 ∈ f−1(y′) such that

A(x0) = [
∨

t∈f−1(y)

AL(t),
∨

t∈f−1(y)

AU (t)]

and
A(x′0) = [

∨

t′∈f−1(y′)

AL(t′),
∨

t′∈f−1(y′)

AU (t′)].

Then
f(A)L(yy′) =

∨

z∈f−1(yy′)

AL(z) ≥ AL(x0x
′
0) [Since f(x0x

′
0) = f(x0)f(x′0)

= yy′]
≥ AL(x0) ∧AL(x′0) [Since A ∈ IVGP(G).]
= (

∨

t∈f−1(y)

AL(t)) ∧ (
∨

t′∈f−1(y′)

AL(t′))

= f(A)L(y) ∧ f(A)L(y′).
Similarly, we have f(A)U (yy′) ≥ f(A)U (y) ∧ f(A)U (y′). So f(A) ∈
IVGP(G′). ¥

Definition 3.12. Let f : X → Y be a mapping and let A ∈ D(I)X .
Then A is said to be interval -valued fuzzy invariant(in short, IVF -
invariant) if f(x) = f(y) implies A(x) = A(y), i .e., AL(x) = AL(y)
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and AU (x) = AU (y).

It is clear that if A is IVF-invariant, i .e., f−1(f(A)) = A.

The following is the immediate result of Definition 3.12.

Proposition 3.13. Let f : X → Y be a mapping and let A = {A ∈
D(I)X : A is IVF-invariant and has the sup-property}. Then there is a
one-to-one correspondence between A and D(I)Imf , where Imf denotes
the image of f

The following is the immediatd result of Propositions 3.11 and 3.13.

Corollary 3.13. Let f : G → G′ be a groupoid homomorphism and let
A = {A ∈ IVGP (G) : A is IVF-invariant and has the sup-property}.
Then there is a one-to-one correspondence between A and IVGP (Imf).

4. Interval-value fuzzy subgroups

Definition 4.1[4]. Let A be an IV Fs in a group G. Then A is called
an interval-valued fuzzy subgroup (in short, IV G) in G if it satisfies
the conditions : For any x, y ∈ G,

(i) AL(xy) ≥ AL(x) ∧AL(y) and AU (xy) ≥ AU (x) ∧AU (y)
(ii) AL(x−1) ≥ AL(x) and AU (x−1) ≥ AU (x)

We will denote the set of all IVGS of G as IVG(G).

Example 4.1. Consider the additive group (Z,+). We define a mapping
A = [AL, AU ] : Z⇁ D(I) as follows : For each n ∈ Z.

A(0) = [AL(0), AU (0)] = [1, 1],
and

A(n) = [AL(n), AU (n)] =





[
1
2
,
2
3
], if n is odd,

[
1
3
,
4
5
], if n is even.

Then clearly A ∈ D(I)Z. Moreover, A satisfies all the conditions of Def-
inition 4.1. So A ∈ IVG(Z). ¥
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Remark 4.1. (a) If A ∈ FG(G), then A = [A,A] ∈ IVG(G), where
FG(G) denotes the set of all fuzzy groups in G.

(b) If A ∈ IVG(G), then AL, AU ∈ FG(G) and (AL, AUC
) ∈ IFG(G).

(c) If A ∈ IFG(G), then [µA, νc
A] ∈ IVG(G).

The following two results can be easily proved from definition 4.1,
Propositions 3.7 and 3.8.

Proposition 4.2. Let G be a group and let H ⊂ G. Then H is a
subgroup of G if and only if [χH , χH ] ∈ IVG(G).

Proposition 4.3. Let {Aα}α∈Γ ⊂ IVG(G). Then
⋂

α∈Γ

Aα ∈ IVG(G).

The followings can be easily seen from Definitions 3.1 and 4.1.

Proposition 4.4. Let G be group and let A ∈ D(I)G. If A ∈ IVG(G),
then A ◦A = A.

Proposition 4.5. Let A,B ∈ IVG(G). Then A ◦ B ∈ IVG(G) if and
only if A ◦B = B ◦A.

Result 4.A [4, Proposition 3.1]. Let A be an IVG in a group G.
(a) A(x−1) = A(x), ∀x ∈ G.
(b) AL(e) ≥ AL(x) and AU (e) ≥ AU (x), ∀x ∈ G, where e is the

identity of G.

Result 4.B [4, Proposition 3.2]. Let A be an IVFS in a group G.
Then A is an IVG in G if and only if AL(xy−1) ≥ AL(x) ∧ AL(y) and
AU (xy−1) ≥ AU (x) ∧AU (y), ∀x, y ∈ G.

Proposition 4.6. If A ∈ IVG(G), then GA = {x ∈ G : A(x) = A(e)}
is a subgroup of G.

Proof. let x, y ∈ GA. Then
AL(xy−1) ≥ AL(x) ∧AL(y−1)
= AL(x) ∧AL(y) [ By Result 4.A ]
= AL(e) ∧AL(e) [ Since x, y ∈ GA ]
= AL(e).

Similarly, we have AU (xy−1) ≥ AU (e), On the other hand, by Result
4.A, it is clear that AL(xy−1) ≤ AL(e) and AU (xy−1) ≤ AU (e), thus
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A(xy−1) = A(e). So xy−1 ∈ GA. Hence GA is a subgroup of G. ¥

Proposition 4.7. let A ∈ IVG(G). If A(xy−1) = A(e) for any x, y ∈ G,
then A(x) = A(y).

Proof. Let x, y ∈ G. Then
AL(x) = AL((xy−1)y)
≥ AL(xy−1) ∧AL(y) [ Since A ∈ IVG(G)]
= AL(e) ∧AL(y) [ By the hypothesis ]
= AL(y). [ By Result 4.A. ]

On the other hard, by Result 4.A, AL(x−1) = AL(x). Then
AL(y) = AL((yx−1)x)
≥ AL(yx−1) ∧AL(x)
=AL((yx−1)−1) ∧AL(x) [ By Result 4.A. ]
=AL(xy−1) ∧AL(x)
=AL(e) ∧AL(x)
=AL(x).

Similarly, we have AU (x) = AU (y). Hence A(x) = A(y). ¥

Corollary 4.7-1. Let A ∈ IVG(G). If GA is a normal subgroup of G,
then A is constant on each coset of GA.

Proof. Let a ∈ G and let x ∈ aGA. Then ∃y ∈ GA such that
x = ay. Since GA is normal, xa−1 ∈ GA. Thus, by the definition
of GA, A(xa−1) = A(e). By proposition 4.7, A(x) = A(a). So A is
constant on aGA ∀a ∈ G. Similarly, we can see that A is constant on
GAa ∀a ∈ G. This completes the proof. ¥

Let H be a subgroup of G. Then the number of right [resp. left]
cosets of H in G is called the index of H in G and denoted by [G : H].
If G is a finite group, then there can be only a finite number of distinct
right [resp. left] cosets of H; hence the index [G : H] is finite. If G is an
infinite group, then [G : H] may be either finite or infinite.

Corollary 4.7-2. Let A ∈ IVG(G) and let GA be normal. If GA has a
finite index, then A has the sup property.

Proof. Let T ⊂ G. Since GA has finite index, let the index [G :
GA] = n, say A= {a1GA, · · · , anGA}, where ai ∈ G(i = 1, · · · , n) and
aiGA ∩ ajGA = 0̃ for any i 6= j. Let t ∈ T . Since G =

⋃A =
⋃n

i=1 aiGi,
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there exists an i ∈ {1, · · · , n} such that t ∈ aiGA. Since GA is normal, by
Corollary 4.7-1, A(t) = A(ai) on aiGA, say AL(t) = αi and AU (t) = βi,
where αi, βi ∈ I and αi ≤ βi. Thus there exists a t0 ∈ T such that
AL(t0) =

∨
t∈T AL(t)=

∨n
i=1 αi and AU (t0) =

∨
t∈T AU (t) =

∨n
i=1 βi.

Hence A has the sup property. ¥

Proposition 4.8. A group G cannot be the union of two proper IVGs.

Proof. Let A and B be proper IVGs of a group G such that A∪B = 1̃,
A 6= 1̃ and B 6= 1̃. Since A ∪B = (AL ∨BL, AU ∨BU ), AL(x) ∨BL(x)
= 1 and AU (x) ∨ BU (x) = 1, ∀x ∈ X. Then AL(x) = 1 or BL(x) = 1
and AU (x) = 1 or BU (x) = 1. Since A 6=1̃ and B 6= 1̃, AL(x) 6= 1
or AU (x) 6= 1 and BL(x) 6= 1 or BU (x) 6= 1. In either cases, this is a
contradiction. This completes the proof. ¥

Proposition 4.9. If A is an IVGP of a finite group G, then A ∈ IVG(G).

Proof. Let x ∈ G. Since G is finite, x has the finite order, say n, Then
xn = e, where e is the identity of G. Thus x−1 = xn−1. Since A is an
IVGP of G,

AL(x−1) = AL(xn−1) = AL(xn−2x) ≥ AL(x)
and

AU (x−1) = AU (xn−1) = AU (xn−2x) ≥ AU (x).
Hence A ∈ IVG(G). ¥

Proposition 4.10. Let A be an IVG of a group G and let x ∈ G. Then
A(xy) = A(y), for each y ∈ G if and only if A(x) = A(e).

Proof. (⇒):Suppose A(xy) = A(y) for each y ∈ G. Then clearly
A(x) = A(e).

(⇐):Suppose A(x) = A(e). Then, by Result 4.A, AL(y) ≤ AL(x) and
AU (y) ≤ AU (x) for each y ∈ G. Since A is an IVG of G, Then AL(xy) ≥
AL(x) ∧ AL(y) and AU (xy) ≥ AU (x) ∨ AU (y). Thus AL(xy) ≥ AL(y)
and AU (xy) ≥ AU (y) for each y ∈ G.

On the other hand, by Result 4.A,
AL(y) = AL(x−1xy) ≥ AL(x) ∧AL(xy)

and
AU (y) = AU (x−1xy) ≥ AU (x) ∧AU (xy).

Since AL(x) ≥ AL(y) for each y ∈ G, AL(x) ∧ AL(xy) = AL(xy) and
AU (x) ∧ AL(xy) = AU (xy). So AL(y) ≥ AL(xy) and AU (y) ≥ AU (xy)



608 Hee Won Kang∗ and Kul Hur∗∗

for each y ∈ G. Hence A(xy) = A(y) for each y ∈ G. ¥

Proposition 4.11. Let f : G → G′ be a group homomorphism, let A ∈
IVG(G) and let B ∈ IVG(G′). Then the following hold:

(a) If A has the sup property, then f(A) ∈ IVG(G′).
(b) f−1(B) ∈ IVG(G).

Proof. (a) By Proposition 3.11, since f(A) ∈ IVGP(G), it is enough
to show that f(A)L(y−1) ≥ f(A)L(y) and f(A)U (y−1) ≥ f(A)U (y) for
each y ∈ f(G).

Let y ∈ f(G). Then φ 6= f−1(y) ⊂ G. Since A has the sup property,
there exists an x0 ∈ f−1(y) such that AL(x0) =

∨
t∈f−1(y) AL(t) and

AU (x0) =
∨

t∈f−1(y) AU (t).
Thus

f(A)L(y−1) =
∨

t∈f−1(y−1)

AL(t) ≥ AL(x−1
0 ) ≥ AL(x0) = f(A)L(y)

and

f(A)U (y−1) =
∨

t∈f−1(y−1)

AU (t) ≥ AU (x−1
0 ) ≥ AU (x0) = f(A)U (y).

Hence f(A) ∈ IVG(G).
(b) By proposition 3.9, since f−1(B) ∈ IVGP(G), it is enough to show

that f−1(B)L(x−1) ≥ f−1(B)L(x) and f−1(B)U (x−1) ≥ f−1(B)U (x) for
each x ∈ G.

Let x ∈ G. Then
f−1(B)L(x−1) = BL(f(x−1)) = BL(f(x)−1)
≥ BL(f(x)) = f−1(B)L(x)

and
f−1(B)U (x−1) = BU (f(x−1)) = BU (f(x)−1)
≥ BU (f(x)) = f−1(B)U (x).

Thus f−1(B) ∈ IVG(G). This completes the proof. ¥

Proposition 4.12. Let Gp be the cyclic group of prime order p. Then
A ∈ IVG(Gp) if and only if AL(x) = AL(1) ≤ AL(0) and AU (x) =
AU (1) ≤ AU (0) for each 0 6= x ∈ Gp.
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Proof. (⇒) : Suppose A ∈ IVG(Gp) and let 0 6= x ∈ Gp. Then
AL(xy) ≥ AL(x)∧AL(y) and AU (xy) ≥ AU (x)∧AU (y) for any x, y ∈ Gp.
Since Gp is the cyclic group of prime order p,Gp = {0, 1, 2, · · · , p − 1}.
Since x is the sum of 1’s and 1 is the sum of x′s,AL(x) ≥ AL(1) ≥ AL(x)
and AU (x) ≥ AU (1) ≥ AU (x). Thus AL(x) = AL(1) and AU (x) =
AU (1). Since 0 is the identity element of Gp, A

L(x) ≤ AL(0) and AU (x) ≤
AU (0). Hence the necessary conditions hold.

(⇐) : Suppose the necessary conditions hold and let x, y ∈ Gp. Then
we have four cases : (i)x 6= 0, y 6= 0 and x = y, (ii) x 6= 0, y = 0, (iii)
x = 0, y 6= 0, (iv) x 6= 0, y 6= 0 and x 6= y.

Case(i) Suppose x 6= 0, y 6= 0 and x = y. Then, by the hypothesis,
AL(x) = AL(y) = AL(1) ≤ AL(0) and AU (x) = AU (y) = AU (1) ≤
AU (0). So AL(x − y) = AL(0) ≥ AL(x) ∧ AL(y) and AL(x − y) ≥
AU (x) ∧AU (y).

Case(ii) Suppose x 6= 0 and y = 0. Since x−y 6= 0, by the hypothesis,
AL(x − y) = AL(x) = AL(1) ≤ AL(0) = AL(y) and AU (x − y) =
AU (x) = AU (1) ≤ AU (0) = AU (y). So AL(x− y) ≥ AL(x) ∧ AL(y) and
AU (x− y) ≥ AU (x) ∧AU (y).

Case(iii) is the same as Case(ii).
Case(iv) Suppose x 6= 0, y 6= 0 and x 6= y. Since x − y 6= 0, by

the hypothesis, AL(x − y) = AL(x) = AL(y) = AL(1) ≤ AL(0) and
AU (x− y) = AU (x) = AU (y) ≤ AU (0). So AL(x− y) ≥ AL(x) ∧ AL(y)
and AU (x − y) ≥ AU (x) ∧ AU (y). In all, AL(x − y) ≥ AL(x) ∧ AL(y)
and AU (x−y) ≥ AU (x)∧AU (y). Hence, by Result 4.B, A ∈ IFG(Gp). ¥

Definition 4.13. Let G be a groupoid and let A ∈ IVS(G). Then A is
called an:

(1) interval-valued fuzzy left ideal (in short, IV LI) of G if for any
x, y ∈ G,AL(xy) ≥ AL(y) and AU (xy) ≥ AU (y).

(2) interval-valued fuzzy right ideal (in short, IV RI) of G if for
any x, y ∈ G,AL(xy) ≥ AL(x) and AU (xy) ≥ AU (x).

(3) interval-valued fuzzy ideal (in short, IV I) of G if it is both an
IFLI and an IFRI.

We will denote the set of all IVLIs[resp. IVRIs and IVIs] of a grou-
piod G as IVLI(G)[resp. IVRI(G) and IVI(G)].

It is clear that A ∈ IVI(G) if and only if and only if for any x, y ∈
G,AL(xy) ≥ AL(x)∨AL(y) and AU (xy) ≥ AU (x)∨AU (y). Moreover, an
IFI(resp. IFLI, IFRI) is an IVGP of G. Note that for any A ∈ IVGP(G),
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we have AL(xn) ≥ AL(x) and AU (xn) ≥ AU (x) for each x ∈ G, where
xn is any composite of x′s.

Proposition 4.14. The IVLIs (resp. IVLIs, IVRIs) in a group G are
just the constant mappings.

Proof. Suppose A is an constant mapping and let x, y ∈ G. Then
A(xy) = A(x) = A(y). Thus A ∈ IVI(G).

Now suppose A ∈ IVLI(G). Then AL(xy) ≥ AL(y) and AU (xy) ≥
AU (y) for any x, y ∈ G. In particular, AL(x) ≥ AL(e) and AU (x) ≥
AU (e) for each x ∈ G. Moreover, AL(e) = AL(x−1x) ≥ AL(x) and
AU (e) = AU (x−1x) ≥ AU (x) for each x ∈ G. So A(x) = A(e) for each
x ∈ G. Hence A is a constant mapping. ¥

Definition 4.15. Let A be an IVFS in a set X and let λ, µ ∈ I with
λ ≤ µ. Then the set A[λ,µ] = {x ∈ X : AL(x) ≥ λ and AU (x) ≥ µ} is
called a [λ, µ]-level subset of A.

Proposition 4.16. Let A be an IVG of a group G. Then, for each
(λ, µ) ∈ I × I such that λ ≤ µA(e), µ ≤ νA(e) and λ ≤ µ, A[λ,µ] is a
subgroup of G.

Proof. Clearly, A[λ,µ] 6= ∅. Let x, y ∈ A[λ,µ]. Then AL(x) ≥ λ,AU (y) ≥
µ and AL(y) ≥ λ, AU (y) ≥ µ. Since A ∈ IVG(G), AL(xy) ≥ AL(x) ∧
AL(y) ≥ λ and AU (xy) ≥ AU (x) ∧ AU (y) ≥ µ. Thus AL(xy) ≥ λ and
AU (xy) ≥ µ. So xy ∈ A[λ,µ]. On the other hand, AL(x−1) ≥ AL(x) ≥ λ
and AU (x−1) ≥ AU (x) ≥ µ. Thus AL(x−1)λ and AU (x−1) ≥ µ. So
x−1 ∈ A[λ,µ]. Hence A[λ,µ] is a subgroup of G. ¥

Proposition 4.16. Let A be an IVS in a group G such that A[λ,µ] is a
subgroup of G for each (λ, µ) ∈ I × I such that λ ≤ AL(e), µ ≤ AU (e)
and λ ≤ µ. Then A is an IVG of G.

Proof. For any x, y ∈ G, let A(x) = [t1, s1] and let A(y) = [t2, s2].
Then clearly, x ∈ A[t1,s1] and y ∈ A[t2,s2]. Suppose t1 < t2 and s1 < s2.
Then A[t2,s2] ⊂ A[t1,s1]. Thus y ∈ A[t1,s1]. Since A[t1,s1] is a sub-
group of G, xy ∈ A[t1,s1]. Then AL(xy) ≥ t1 and AU (xy) ≥ s1. So
AL(xy) ≥ AL(x) ∧ AL(y) and AU (xy) ≥ AU (x) ∧ AU (y). For each
x ∈ G, let A(xy) = [λ, µ]. Then x ∈ A[λ,µ]. Since A[λ,µ] is a subgroup of
G, x−1 ∈ A[λ,µ]. So AL(x−1) ≥ AL(x) and AU (x−1) ≥ AU . Hence A ∈
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IVG(G). ¥

5. Interval-value fuzzy normal subgroups

Definition 5.1. Let A ∈ IVG(G). Then A is called an interval-
valued fuzzy
normal subgroup( in short, IV NG) of G if A(xy) = A(yx), for any
x, y ∈ G.

We will denote the set of all IVNGs of a group G as IVNG(G). It is
clear that if G is abelian, then A ∈ IVNG(G), ∀A ∈ IVG(G).

Example 5.1. Consider the general linear group of degree n,GL(n,R).
Then clearly, GL(n,R) is a non abelian group. Let us define a mapping
A : GL(n,R) → D(I) as follows: for any In 6= M ∈ GL(n,R), where In

is the unit matrix,
A(In) = 1̃,

AL(M) =





1
5

if M is not a triangular matrix,

1
3

if M is a triangular matrix

and

AU (M) =





2
3

if M is not a triangular matrix,

1
2

if M is a triangular matrix

Then we can easily see that A is an IVNG of GL(n,R). ¥

The following is the immediate result of Definitions 3.1 and 5.1.

Proposition 5.2. Let A ∈ D(I)G and let B ∈ IVNG(G). Then
A ◦B = B ◦A.

Proposition 5.3. Let A ∈ IVNG(G). If B ∈ IVG(G), then so is B ◦A.

Proof. By Definitions 3.1 and 3.4, it can be easily seen that B ◦ A ∈
IVGP(G). Thus it is sufficient to show that (B◦A)L(x−1) ≥ (B◦A)L(x)
and (B ◦A)U (x−1) ≥ (B ◦A)U (x) for each x ∈ G.
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Let x ∈ G. Then
(B ◦A)L(x−1) =

∨

yz=x−1

[BL(y) ∧AL(z)]

=
∨

z−1y−1=x

[BL((y−1)−1) ∧AL((z−1)−1)]

≥
∨

z−1y−1=x

[BL(y−1) ∧AL(z−1)]

= (A ◦B)L(x) = (B ◦A)L(x).
Similarly, we have (B ◦A)U (x−1) ≥ (B ◦A)U (x) for each x ∈ G. Hence
B ◦A ∈ IVG(G). ¥

Corollary 5.3. Let A, B ∈ IVNG(G). Then A ◦B ∈ IVNG(G).

Proof. By Proposition 4.5, A ◦ B ∈ IVG(G). Let a, b ∈ G. Then
there exists x, y ∈ G such that ab = xy. Since b = a−1xy, ba =
(a−1xa)(a−1ya). Since A,B ∈ IVNG(G),

(A ◦B)(ab) = [(A ◦B)L(ab), (A ◦B)U (ab)]
= [

∨

ab=xy

(AL(x) ∧BL(y)),
∨

ab=xy

(AU (x) ∧BU (y))]

= [
∨

ba=(a−1xa)(a−1ya)

(AL(a−1xa) ∧BL(a−1ya)),

∨

ba=(a−1xa)(a−1ya)

(AU (a−1xa) ∧BU (a−1ya)]

= [(A ◦B)L(ba), (A ◦B)U (ba)]
= (A ◦B)(ba).

Hence A ◦B ∈ IFNG(G). ¥

Proposition 5.4. If A ∈ IVNG(G), then GA is a normal subgroup of G.

Proof. By Proposition 4.6, GA is a subgroup of G. Moreover GA 6= ∅.
Let x ∈ GA and let y ∈ G. Then

AL(yxy−1) = AL((yx)x−1) = AL(y−1(yx)) = AL(x) = AL(e)
and

AU (yxy−1) = AU ((yx)x−1) = AU (y−1(yx)) = AU (x) = AU (e)
Thus yxy−1 ∈ GA. Hence GA is a normal subgroup of G. ¥

It is clear that if A is a (usual) normal subgroup of G, then A =
[χA, χA] ∈ IVNG(G) and GA = A.
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Definition 5.5. Let A ∈ IVNG(G). Then the quotient group G/GA is
called the interval-valued fuzzy quotient subgroup (in short, IV QG)
of X with respect to A.

Now let π : G → G/GA be the natural projection.

Proposition 5.6. If A ∈ IVNG(G) and B ∈ D(I)G, then π−1(π(B)) =
GA ◦B.

Proof. Let x ∈ G. then
π−1(π(B))L = π(b)L(π(x))
=

∨

π(y)=π(x)

BL(y) =
∨

xy−1∈GA

BL(y)

and
π−1(π(B))U = π(b)U (π(x))
=

∨

π(y)=π(x)

BU (y) =
∨

xy−1∈GA

BU (y).

On the other hand
(GA ◦B)L(x) =

∨
xy=x

[GA(z) ∧BL(y)] =
∨

z=xy−1∈GA

BL(y)

and
(GA ◦B)U (x) =

∨
xy=x

[GA(z) ∧BU (y)] =
∨

z=xy−1∈GA

BU (y).

Thus π−1(π(b))(x) = (GA ◦ B)(x) for each x ∈ G. Hence π−1(π(B)) =
GA ◦B. ¥

6. Interval-valued fuzzy subrings and ideals

Definition 6.1. Let (R, +, ·) be a ring and let 0̃ 6= A ∈ D(I)R. Then
A is called an interval-valued fuzzy subring (in short, IV R) in R if it
satisfies the following conitions:

(i) A is an IVG in R with respect to the operation ”+”(in the sense
of Definition 4.1).

(ii) A is an IVGP in R with respect to the operation ”·”(in the sense
of Definition 3.4 or Definition 3.4′).

We will denote the set of all IVRs of R as IVR(R).
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Example 6.1. Consider the ring (Z2, +, ·), where Z2 = {0, 2}. We
define the mapping A : Z2 → D(I) as follows: A(0) = [0.2, 0.7] and
A(1) = [0.5, 0.6]. Then we can see that A ∈ IVR(Z2). ¥

Remark 6.1. (1)If A is a fuzzy subring of a ring R, then [A,A] ∈IVR(R)
(2)If A ∈ IVR(R), then AL and AU are fuzzy subrings of R.

The following is the immediate result of Definition 3.4′ and Result
4.B.

Proposition 6.2. Let R be a ring and let 0̃ 6= A ∈ D(I)R. Then A ∈
IVR(R) if and only of for any x, y ∈ R,

(i)AL(x− y) ≥ AL(x) ∧AL(y) and AU (x− y) ≥ AU (x) ∧AU (y).
(ii)AL(xy) ≥ AL(x) ∧AL(y) and AU (xy) ≥ AU (x) ∧AU (y).

The following is easily seen.

Proposition 6.3. Let R be a ring. Then A is a subring of R if and
only if [χA, χA] ∈ IVR(R).

Definition 6.4. Let R be a ring and let 0̃ 6= A ∈ IVR(R). Then A is
called an:

(1) interval-valued fuzzy left ideal (in short, IV LI) in R if AL(xy) ≥
AL(y) and AU (xy) ≥ AU (y) for any x, y ∈ R.

(2) interval-valued fuzzy right ideal (in short, IV RI) in X if AL(xy) ≥
AL(x) and AU (xy) ≥ AU (x) for any x, y ∈ R.

(3) interval-valued fuzzy ideal (in short, IFI) in X if it both an
IVLI and an IVRI in R.

We will denote the set of all IVLIs [resp. IVRIs and IVIs] of a ring
R as IVLI(R)[resp. IVRI(R) and IVI(R)].

Example 6.4. Consider the ring (Z4, +, ·), where Z4 = {0, 1, 2, 3}. We
define the mapping A : Z4 → D(I) as follows: A(0) = [0.2, 0.8], A(1) =
[0.3, 0.6] = A(3), and A(2) = [0.4, 0.5]. Then we can easily see that A ∈
IVI(Z4). ¥

Remark 6.4. (1) If A is a fuzzy [resp. left, right] ideal of a ring R,
then [A, Ac] ∈ IVI(R) [resp. IVLI(R) and IVRI(R)].
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(2) If A ∈ IVI(R) [resp. IVLI(R) and IVRI(R)], then AL and AU are
fuzzy [resp. left and right] ideals of R.

The following can be directly verified.

Proposition 6.5. Let R be a ring and let 0̃ 6= A ∈ D(I)R. Then A is
an IVI[resp. IFLI and IFRI] of R if and only of for any x, y ∈ R,

(i) AL(x− y) ≥ AL(x) ∧AL(y) and AU (x− y) ≥ AU (x) ∨AU (y).
(ii) AL(xy) ≥ AL(x) ∨ AL(y) and AU (xy) ≥ AU (x) ∨ AU (y)[resp.

AL(xy) ≥ AL(y) and AU (xy) ≥ AU (y), AL(xy) ≥ AL(x) and AU (xy) ≥
AU (x)].

The following is easily seen.

Proposition 6.6. Let R be a ring. Then A is an ideal [resp. a left ideal
and a right ideal] of R if and only if [χA, χA] ∈ IVI(R) [resp. IVLI(R)
and IVRI(R)].

Proposition 6.7. Let R be a skew field (also division ring) and let
0̃ 6= A ∈ D(I)R. Then A is an IFI(IFLI, IFRI) of R if and only
if AL(x) = AL(e) ≤ AL(0) and AU (x) = AU (e) ≥ AU (0) for any
0 6= x ∈ R, where 0 is the identity of R for ”+” and e is the iden-
tity of R for ”·”.

Proof. (⇒): Suppose A ∈ IVLI(R) and let 0 6= x ∈ R. Then
AL(x) = AL(xe) ≥ AL(e), AL(e) = AL(x−1x) ≥ AL(x)

and
AU (x) = AU (xe) ≥ AU (e), AU (e) = AU (x−1x) ≥ AU (x).

Thus A(x) = A(e). On the other hand,
AL(0) = AL(e− e) ≥ AL(e) ∧AL(e) = AL(e)

and
AU (0) = AU (e− e) ≥ AU (e) ∧AU (e) = AU (e).

So AL(e) ≤ AL(0) and AU (e) ≤ AU (0). Hence the necessary conditions
hold.

(⇐): Suppose the necessary conditions hold. Let x ∈ R. Then we
have four cases:

(i) x 6= 0, y 6= 0 and x 6= y (ii) x 6= 0, y 6= 0 and x = y

(iii) x 6= 0, y = 0 (iv) x = 0, y 6= 0.
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Case (i) Suppose x 6= 0, y 6= 0 and x 6= y. Then
AL(x− y) = AL(e) ≥ AL(x) ∧AL(y),
AU (x− y) = AU (e) ≥ AU (x) ∧AU (y)

and
AL(xy) = AL(e) ≥ AL(x) ∨AL(y),
AU (xy) = AU (e) ≥ AU (x) ∨AU (y).
Case(ii): Suppose x 6= 0, y 6= 0 and x = y. Then
AL(x− y) = AL(0) ≥ AL(x) ∧AL(y),
AU (x− y) = AU (0) ≥ AU (x) ∧AU (y)

and
AL(xy) = AL(e) ≥ AL(x) ∨AL(y),
AU (xy) = AU (e) ≥ AU (x) ∨AU (y).
Case(iii): Suppose x 6= 0 and y = 0. Then
AL(x− y) = AL(x) = AL(e) ≥ AL(x) ∧AL(y),
AU (x− y) = AU (x) = AU (0) ≥ AU (x) ∧AU (y)

and
AL(xy) = AL(0) ≥ AL(x) ∨AL(y),
AU (xy) = AU (0) ≥ AU (x) ∨AU (y).
Case(iv): It is similar to case(iii).
In all, A ∈ IVI(R). This completes the proof. ¥

Remark 6.8. Proposition 6.5 shows that an IVLI(IVRI) is an IVI in a
skew field.

The following gives a characteristic of a (usual) field by an IVI.

Proposition 6.9. Let R be a commutative ring with a unity e. If for
A ∈ IVI(R), AL(x) = AL(e) ≤ AL(0) and AU (x) = AU (e) ≤ AU (0) for
each 0 6= x ∈ R, then R is a field.

Proof. Let A be an ideal of R such that A 6= R. Then clearly A =
[χA, χA] ∈ IVI(R) such that A 6= 1̃. Thus there exists y ∈ R such that
y 6∈ A. Thus χA(y) = 0. By the hypothesis, χA(x) = χA(e) ≤ χA(0),
for each 0 6= x ∈ X. So χA(0) = 1, i.e.,A = {0}. Hence R is a field. ¥
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