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T-INTERVAL-VALUED FUZZY SUBGROUPS AND
RINGS

Hee Won Kang∗

Abstract. We introduce the concepts of interval-valued fuzzy sub-
groups [resp. normal subgroups, rings and ideals] and investigate
some of it’s properties.

1. Introduction

In 1975, Zadeh[8] suggested the notion of interval-valued fuzzy sets as
another generalization of fuzzy sets. After that time, Biswas[1] applied
it to group theory, and also Kang and Hur[4] applied it to group and ring
theory. Gorzalczany[2] suggested a method of inference in approximate
reasoning by using interval-valued fuzzy sets. Moreover Montal and
Samanta[6] introduced the concept of topology of interval-valued fuzzy
sets and investigate some of it’s properties. Recently, Hur et. al[3]
studies interval-valued fuzzy relations in the sense of a lattice theory. In
this paper, we introduce the concept of t-interval-valued fuzzy subgroups
[resp.normal subgroup, rings and ideals] and investigate some of it’s
properties.

2. Preliminaries

In this section, we list some concepts and results related to interval-
valued fuzzy set theory and needed in next sections.

Let D(I) be the set of all closed subintervals of the unit interval
I = [0, 1]. The elements of D(I) are generally denoted by capital letters
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M, N, · · ·, and note that M = [ML,MU ], where ML and MU are the
lower and the upper end points respectively. Especially, we denoted , 0
= [0, 0], 1 = [1, 1], and a = [a, a] for every a ∈ (0, 1), We also note that

(i) (∀M,N ∈ D(I)) (M = N ⇔ ML = NL,MU = NU ),

(ii) (∀M,N ∈ D(I)) (M ≤ N ⇔ ML ≤ NL,MU ≤ NU ).

For every M ∈ D(I), the complement of M , denoted by MC , is defined
by MC = 1−M = [1−MU , 1−ML](See[6]).

Definition 2.1[6,8]. A mapping A : X → D(I) is called an interval -
valued fuzzy set(is short, IVFS ) in X, denoted by A = [AL, AU ], if
AL, AL ∈ IX such that AL ≤ AU , i.e., AL(x) ≤ AU (x) for each x ∈ X,
where AL(x)[resp AU (x)] is called the lower [resp upper ] end point of x
to A. For any [a, b] ∈ D(I), the interval-valued fuzzy A in X defined by
A(x) = [AL(x), AU (x)] = [a, b] for each x ∈ X is denoted by ˜[a, b] and if
a = b, then the IVFS ˜[a, b] is denoted by simply ã. In particular, 0̃ and 1̃
denote the interval -valued fuzzy empty set and the interval -valued fuzzy
whole set in X, respectively.

We will denote the set of all IVFSs in X as D(I)X .It is clear that
A = [A,A] ∈ D(I)X for each A ∈ IX .

Definition 2.2[6]. An IVFS A is called an interval -valued fuzzy point(in
short, IVFP) in X with the support x ∈ X and the value [a, b] ∈ D(I)
with b > 0, denoted by A = x[a,b], if for each y ∈ X

A(y) =
{ [a, b] if y = x,

0 otherwise

In particular, if b = a, then x[a,b] is denoted by xa.

We will denote the set of all IVFPs in X as IVFP(X) .
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Definition 2.3 [6]. Let A,B ∈ D(I)X and let {Aα}α∈Γ ⊂ D(I)X .
Then:

(i) A ⊂ B iff AL ≤ BL and AU ≤ BU .
(ii) A = B iff A ⊂ B and B ⊂ A.
(iii) AC = [1−AU , 1−AL].
(iv) A ∪B = [AL ∨BL, AU ∨BU ].
(iv)′

⋃

α∈Γ

Aα = [
∨

α∈Γ

AL
α,

∨

α∈Γ

AU
α ].

(v) A ∩B = [AL ∧BL, AU ∧BU ].
(v)′

⋂

α∈Γ

Aα = [
∧

α∈Γ

AL
α,

∧

α∈Γ

AU
α ].

Result 2.B[6, Theorem 1]. Let A, B,C ∈ D(I)X and let {Aα}α∈Γ ⊂
D(I)X . Then:

(a) 0̃ ⊂ A ⊂ 1̃.
(b) A ∪B = B ∪A , A ∩B = B ∩A.
(c) A ∪ (B ∪ C) = (A ∪B) ∪ C , A ∩ (B ∩ C) = (A ∩B) ∩ C.
(d) A, B ⊂ A ∪B , A ∩B ⊂ A,B.
(e) A ∩ (

⋃

α∈Γ

Aα) =
⋃

α∈Γ

(A ∩Aα).

(f) A ∪ (
⋂

α∈Γ

Aα) =
⋂

α∈Γ

(A ∪Aα).

(g) (0̃)c = 1̃ , (1̃)c = 0̃.
(h) (Ac)c = A.
(i) (

⋃

α∈Γ

Aα)c =
⋂

α∈Γ

Ac
α , (

⋂

α∈Γ

Aα)c =
⋃

α∈Γ

Ac
α.

Definition 2.4[6]. Let A ∈ D(I)X and let xM ∈ IVFP(X). Then
xM is said to belong to A, denoted by xM ∈ A, if ML ≤ AL(x) and
MU ≤ AU (x) for each x ∈ X.

It is obvious that A =
⋃

xM∈A

xM and xM ∈ A if and only if xML ∈ AL

and xMU ∈ AU .

Definition 2.5[7]. A t-norm is a mapping t : I × I → I satisfing the
following conditions : for any x, y, z, u, v ∈ I

(i) t(x, y) = t(y, x), i.e., xty = ytx.
(ii) xt(ytz) = (xty)tz.
(iii) If x ≤ u and y ≤ v, then xty ≤ utv
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In particular, if y ≤ v, then xty ≤ xtv.
(iv) xt1 = x and xt0 = 0.

t-norms which are frequently encountered are :
(a) xt0y = min{x, y} for x, y ∈ I.
(b) xt1y = Prod{x, y} = xy for x, y ∈ I.
(c) xt2y = max{x + y − 1, 0} for x, y ∈ I.

Definition 2.6[7]. A t-conorm or s-norm is a mapping st : I → I
defined by : for any u, v ∈ I,

ustv = 1− (1− u)t(1− v).

It is clear that st satisfies the following conditions : for any x, y, z, u, v ∈
I.

(i) xsty = ystx.
(ii) xst(ystz) = (xsty)stz.
(iii) If x ≤ u and y ≤ v, then xsty ≤ ustv

In particular, if y ≤ v, then xsty ≤ xstv.
(iv) xst0 = x and xst1 = 1.

t-conorms corresponding to the above t-norms t0, t1, t2 are as follows:
(a′) xs0y = max{x, y} for any x, y ∈ I.
(b′) xs1y = x + y − xy for any x, y ∈ I.
(c′) xs2y = min{1, x + y} for any x, y ∈ I.

3. t-interval-valued fuzzy subgroupoids

Definition 3.1. Let (G, ·) be a groupoid and let A,B ∈ D(I)G. Then
the interval -valued fuzzy product of A and B under t-norm t (in short,
t-interval-valued fuzzy product of A and B), denoted by A ◦t B, is an
IVFS in G defined as follows : For each x ∈ G,

(A ◦t B)(x) =





[
∨

yz=x

[AL(y)tBL(z)],
∨

yz=x

[AU (y)tBU (z)]] if yz = x

0 otherwise.

It is clear that (D(I)G, ◦t) is a groupoid.
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Proposition 3.2. Let ”◦t” be same as above, let xM , yN ∈ IVFp(G)
and let A,B ∈ D(I)G. Then:

(a) xM ◦t yN = (xy)[MLtNL,MU tNU ].

(a) A ◦t B =
⋃

xM∈A,yN∈B

xM ◦t yN .

Proof . (a) Let z ∈ G. Then

(xM ◦t yN )(z) =





[
∨

z=x′y′
(xML(x′) ∧ yNL(y′)),

∨

z=x′y′
(xMU (x′) ∧ yNU (y′))]

if x′y′ = z,

0 otherwise.

=

{
[MLtNL,MU tNU ] if z = xy

0 otherwise.

= (xy)[MLtNL,MU tNU ]

.
(b) Let C =

⋃

xM∈A,yN∈B

xM ◦t yN , i .e.,

C = [
∨

x
ML∈AL,y

NL∈BL

(xML ◦t yNL),
∨

x
MU∈AU ,y

NU∈BU

(xMU ◦t yNU )].

For each z ∈ G, we may assume that ∃u, υ ∈ X such that uυ = z,
xM (u) 6= 0 and yN (v) 6= 0, i.e., xM

L(u) > 0, xM
U < 1 and yN

L(v) >
0, yM

U (v) < 1, whitout loss of generality. Then

(A ◦t B)L(z) =
∨

z=uv

[AL(u)tBL(v)]

≥
∨

z=uv

(
∨

x
ML∈AL,y

NL∈BL

[xML(u)tyNL(v)]) [Since t is increasing]

= (
⋃

x
ML∈AL,y

NL∈BL

xML ◦t yNL)

= CL(z).



550 Hee Won Kang∗

Since uA(u) ∈ A and vB(v) ∈ B,

CL(z) =
∨

x
ML∈AL,y

NL∈BL

(
∨

z=uv

[xML(u)tyNL(v)])

=
∨

z=uv

(
∨

x
ML∈AL,y

NL∈BL

[xML(u)tyNL(v)])

≥
∨

z=uv

[uAL(u)(u)tvBL(v)(v)]

=
∨

z=uv

[AL(u)tBL(v)]

= (A ◦t B)L(z).
Thus (A ◦t B)L = CL. By the similar arguments, we have (A ◦t B)U =
CU .
Hence

A ◦t B =
⋃

x
ML∈AL,y

NL∈BL

xML ◦t yNL . ¥

Remark 3.2. Proposition 3.2 is the generalization of Proposition 3.2 in
[4].

The following is the immediate result of Definition 3.1.

Proposition 3.3. Let (G, ·) be a groupoid, and let ”◦t” be same as
above.

(a) if ”·” is associative[resp. commutative] in G, then so is ”◦t” in
D(I)G.

(b) if ”·” is has an identity e ∈ G, then e1 ∈ IVFp(G) is an identity
of ”◦t” in D(I)G, i .e., A ◦t e1 = A = e1 ◦t A for each A ∈ D(I)G.

Definition 3.4. Let (G, ·) be a groupoid and let 0̃ 6= A ∈ D(I)G. Then
A is called an interval -valued fuzzy subgroupoid (in short, t-IV GP ) in
G if A ◦t A ⊂ A, i .e., AL ◦t AL ⊂ AL and AU ◦t AU ⊂ AU .

It is clear that 0 and 1 are both t-IV GPs in G.

The followings are the immediate results of Definitions 3.1 and 3.4.
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Proposition 3.5. Let (G, ·) be a groupoid and let 0̃ 6= A ∈ D(I)G.
Then the followings are equivalent:

(a) A is a t-IVGP in G.
(b) For any xM , yN ∈ A, xM ◦t yN ∈ A, i .e., (A, ◦t) is a groupoid.
(c) For any x, y ∈ G, AL(xy) ≥ AL(x)tAL(y) and AU (xy) ≥

AU (x)tAU (y).

Remark 3.5. Proposition 3.5 is the generalization of Proposition 3.5 in
[4].

Proposition 3.6. Let A be a t-IVGP in a groupoid (G, ·).
(a) If ”·” is associative in G, then so is ”◦t ” in A, i .e., for any

xL, yM , zN ∈ A,
xL ◦t (yM ◦t zN ) = (xL ◦t yM ) ◦t zN .

(b) If ”·” is commutative in G, then so is ”◦t” in A, i .e., for any
xL, yM ∈ A,

xL ◦t yM = yM ◦t xL.
(c) If ”·” has an identity e ∈ G, then

e1 ◦t xL = xL = xL ◦t e1, ∀xL ∈ A.

Remark 3.6. Proposition 3.6 is the generalization of Proposition 3.6 in
[4].

From Proposition 3.5, we can define a t-IVGP in G as follows.

Definition 3.4′. An interval-valued fuzzy set A in G is called a t-
interval-valued fuzzy subgroupoid(in short, t-IVGP) in G if

AL(xy) ≥ AL(x)tAL(y) and AU (xy) ≥ AU (x)tAU (y), ∀x, y ∈ G.

The following is the immediate result of Definition 3.4′.

Proposition 3.7. Let T be a subset of a groupoid (G, ·). Then A =
[χT , χT ] is a t-IVGP in G if and only if T is a subgroupoid of G, where
χT is the charecteristic function of T .

Remark 3.7. Proposition3.7 is the generalization of Proposition 3.7 in
[4].
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Definition 3.8[7]. A t- norm t is said to be continuous if t : I × I → I
is continuous with respect to the usual topologies.

It is clear that t0, t1 and t2 are all continuous t-norms.

Proposition 3.9. Let {Aα}α∈Γ be any family of t-IVGPs in a groupoid
(G, ·). If t is continuous, then

⋂

α∈Γ

Aα is a t-IVGP in G.

Proof . Let A =
⋂

α∈Γ

Aα and let x, y ∈ G. Then

AL(xy) =
∧

α∈Γ

AL
α(xy)

≥
∧

α∈Γ

[AL
α(x)tAL

α(y)]. [ Since Aα is a t-IVGP in G]

Since t is continous, t is continuous at (
∧

α∈Γ Aα
L(x),

∧
α∈Γ Aα

L(y)). Let
ε > 0. Then there exists a δ > 0 such that if r1 ≥

∧
α∈Γ Aα

L(x) + δ and
r2 ≥

∧
α∈Γ Aα

L(y) + δ, then r1tr2 ≥ (
∧

α∈Γ Aα
L(x))t(

∧
α∈Γ Aα

L(y)) +
ε. Let us choose α0 ∈ Γ such that Aα0

L(x) ≥ ∧
α∈Γ Aα0

L(x) + δ and
Aα0

L(y) ≥ ∧
α∈Γ Aα

L(y) + δ. Then

Aα0
L(x)tAα0

L(y) ≥ (
∧

α∈Γ Aα
L(x))t(

∨
α∈Γ Aα

L(y)) + ε.

Thus
∧

α∈Γ[Aα0
L(x)tAα0

L(y)] ≥ (
∧

α∈Γ Aα
L(x))t(

∨
α∈Γ Aα

L(y)).

So
∧

α∈Γ[AL
α(x)∧AL

α(y)] ≥ (
⋂

α∈Γ AL
α)(x)t(

⋂
α∈Γ AL

α)(y)=AL(x)tAL(y).

Similarly, we can see that AU (xy) ≥ AU (x)tAU (y). Hence
⋂

α∈Γ

Aα is a

t-IVGP in G. ¥

Remark 3.9. Since t0 = ” ∧ ” is continuous, Proposition 3.9 is the
generalization of Proposition 3.8 in [4].

4. t-interval-valued fuzzy subgroups
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Definition 4.1. Let be a group and let A ∈ D(I)G. Then A is called
an interval-valued fuzzy subgroup under a t-norm t (in short, t-IV G)
in G if it satisfies the conditions : For any x, y ∈ G,

(i) AL(xy) ≥ AL(x)tAL(y) and AU (xy) ≤ AU (x)tAU (y),
(ii) AL(x−1) ≥ AL(x) and AU (x−1) ≥ AU (x).

Proposition 4.2. Let A be a t-IVG in a group G. Then A(x−1) = A(x)
for each x ∈ G.

Proof. Let x ∈ G. Then
AL(x) = AL((x−1)−1) ≥ AL(x−1) ≥ AL(x)

and
AU (x) = AU ((x−1)−1) ≥ AU (x−1) ≥ AU (x).

Thus AL(x−1) = AL(x) and AU (x−1) = AU (x). So A(x−1 = A(x) for
each x ∈ X. ¥

Proposition 4.3. If A is a t-IVG in a group G, then H = {x ∈ G :
A(x) = 1} is a subgroup of G.

Proof. Let x, y ∈ H. Then
AL(xy−1) ≥ AL(x)tAL(y−1) = AL(x)tAL(y) = 1t1 = 1

and
AU (xy−1) ≥ AU (x)tAU (y−1) = AU (x)tAU (y) = 1t1 = 1.

Thus AL(xy−1) = 1 and AU (xy−1) = 1. So xy−1 ∈ H. Hence H is a
subgroup of X. ¥

Proposition 4.4. If A is a t-IVG in a group G and if there is a sequence
xn in X such that limn→∞AL(xn)tAL(xn) = 1 and limn→∞AU (xn)tAU

(xn) = 1, then A(e) = 1, where e is the identity in G.

Proof. Let x ∈ G. Then
AL(e) = AL(xx−1) ≥ AL(x)tAL(x−1) = AL(x)tAL(x)

and
AU (e) = AU (xx−1) ≥ AU (x)tAU (x−1) = AU (x)tAU (x).

Then, for each n,
AL(e) ≥ AL(xn)tAL(xn)

and
Au(e) ≥ Au(xn)tAu(xn).

On the other hand,
1 ≥ AL(e) ≥ limn→∞AL(xn)tAL(xn) = 1
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and
1 ≥ AU (e) ≥ limn→∞AU (xn)tAU (xn) = 1.

Hence A(e) = 1. ¥

Proposition 4.5. Let A be a t-IVG in a group G. If A(xy−1) = 1,
then A(x) = A(y).

Proof. Let x, y ∈ G. Then
AL(x) = AL((xy−1)y) ≥ AL(xy−1)tAL(y) = 1tAL(y)
= AL(y) = AL(y−1) = AL(x−1(xy−1))
≥ AL(x−1)tAL(xy−1) = AL(x)t1 = AL(x)

and
AU (x) = AU ((xy−1)y) ≥ AU (xy−1)tAU (y) = 1tAU (y)
= AU (y) = AU (y−1) = AU (x−1(xy−1))
≥ AU (x−1)tAU (xy−1) = AU (x)t1 = AU (x).

Hence A(x) = A(y). ¥

Proposition 4.6. Let G be a group and let 0 6= A ∈ D(I)G with
A(e) = 1. Then A is a t-IVG inG if and only if AL(xy−1) ≥ AL(x)tAL(y)
and AU (xy−1) ≥ AU (x)tAU (y) for any x, y ∈ G.

Proof. (⇒): Suppose A is a t-IVG in G and let x, y ∈ G. Then, by
Proposition 4.2, AL(xy−1) ≥ AL(x)tAL(y) and AU (xy−1) ≥ AU (x)tAU (y).

(⇐): Suppose the necessary conditions hold and let x, y ∈ G. Then
AL(x−1) = AL(ex−1) ≥ AL(e)tAL(x)
= 1tAL(x) = AL(x)

and
AU (x−1) = AU (ex−1) ≥ AU (e)tAU (x)
= 1tAU (x) = AU (x).

So AL(x−1) ≥ AL(x) and AU (x−1) ≥ AU (x) for each x ∈ G.
On the other hand,

AL(xy) = AL(x(y−1)−1) ≥ AL(x)tAL(y−1)
≥ AL(x)tAL(y)

and
AU (xy) = AU (x(y−1)−1) ≥ AU (x)tAU (y−1)
≥ AU (x)tAU (y).

Hence A is a t-IVG in G. ¥

Proposition 4.7. Let Gp be the cyclic group of prime order p and let
A ∈ D(I)Gp with A(e) = 1, where e is the identity in Gp. If A(x) =
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A(a) ≤ A(e), for each e 6= x ∈ Gp where Gp = (a) = e = a0, a1, a2, · · · ap−1,
then A is a t-IVG in Gp.

Proof. Let x, y ∈ Gp.
Case(i) : Suppose x 6= e, y 6= e and xy−1 6= e. Then, by the hypoth-

esis,
AL(xy−1) = AL(x) = AL(y)

and
AU (xy−1) = AU (x) = AU (y).

Thus
AL(xy−1) ≥ AL(x)tAL(y)

and
AU (xy−1) ≥ AU (x)tAU (y).
Case(ii) : Suppose x 6= e, y 6= e and xy−1 = e. Then, by the

hypothesis,
AL(x) = AL(y) ≤ AL(e) = AL(xy−1)

and
AU (x) = AU (y) ≤ AU (e) = AU (xy−1).

Thus
AL(xy−1) ≥ AL(x)tAL(y)

and
AU (xy−1) ≥ AU (x)tAU (y).
Case(iii) : Suppose x 6= e, y = e and xy−1 6= e. Then, by the

hypothesis,
AL(x) = AL(xy−1) ≤ AL(e) = AL(y) = 1

and
AU (x) = AU (xy−1) ≤ AU (e) = AU (y) = 1.

Thus
AL(xy−1) ≥ AL(x)t1 = AL(x)tAL(y)

and
AU (xy−1) ≥ AU (x)t1 = AL(x)tAU (y).
Case(iv) : Suppose x = e, y 6= e, xy−1 6= e. Then it is the same as

case (iii).
In all,

AL(xy−1) ≥ AL(x)tAL(y)
and

AU (xy−1) ≥ AU (x)tAU (y).
Hence A is a t-IVG in Gp. ¥
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Definition 4.8. Let A be a t-IVG in a group G. Then A is called a
t-interval-valued fuzzy normal subgroup (in short, t-IV NG) in G if
A(xy) = A(yx) for any x, y ∈ X.

Proposition 4.9. Let A be a t-IVNG in a group G.
(a) For each B ∈ D(I)G, A ◦t B = B ◦t A.
(b) If B is a t-IVG in G, then so is B ◦t A.

Proof. (a) Let z ∈ G with z = xy. Then
(A ◦t B)L(z) =

∨
xy=z AL(x)tBL(y)

=
∨

x=zy−1 AL(x)tBL(y)
=

∨
x=zy−1 AL(zy−1)tBL(y)

=
∨

x′=y−1z AL(x′)tBL(y)
(Since A is a t-IVNG in G)
=

∨
yx′=z BL(y)tAL(x′) = (B ◦t A)L.

Similarly, (A ◦t B)U (z) = (B ◦t A)U (z). So A ◦t B = B ◦t A. ¥

(b) By Definition 3.4 and (a),
(B ◦t A) ◦t (B ◦t A) = B ◦t (A ◦t B) ◦t A
= B ◦t (B ◦t A) ◦t A
= (B ◦t B) ◦t (A ◦t A) ⊂ B ◦t A.

Thus B ◦t A is a t-IVGP in G. Now let x ∈ G with x−1 = yz.
Then

(B ◦t A)L(x−1) =
∨

yz=x−1 BL(y)tAL(z)
=

∨
x=z−1y−1 BL((y−1)−1)tAL((z−1)−1)

≥ ∨
x=z−1y−1 BL(y−1)tAL(z−1)

=
∨

x=z−1y−1 AL(z−1)tBL(y−1)
= (A ◦t B)L(x) = (B ◦t A)L(x). (By (a)).
Similarly, we have (B ◦t A)U (x−1) ≥ (B ◦t A)U (x).
Hence B ◦t A is a t-IVG in G. ¥

5. t-interval-valued fuzzy rings and ideals

Definition 5.1. Let (R, +, ·) be a ring, let t be a t-interval-valued fuzzy
subring (in short, t-IVR) in R if it satisfies the following conditions:

(i)A is a t-IVG in R with respect to ” + ” (in the sense of Definition
4.1),
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(ii) A is a t-IVGP in R with respect to ” ·” (in the sense of Definition
3.4 or Definition 3.4′).

Proposition 5.2. Let R be a ring and let 0̃ 6= A ∈ D(I)R such that
A(0) = 1 where 0 is the zero element for ” + ” in R. Then A is a t-IVR
in R if and only if any x, y ∈ G.

AL(x)tAL(y) ≤ AL(x− y) ∧AL(xy)
and

AU (x)tAU (y) ≤ AU (x− y) ∧AU (xy)

Proof. A is a t-IVR in R
if and only if

AL(x− y) ≥ AL(x)tAL(y), AU (x− y) ≥ AU (x)tAU (y)
(by Proposition 4.6)

and
AL(xy) ≥ AL(x)tAL(y), AU (xy) ≥ AU (x)tAU (y) for any x, y ∈ R
(by Definition 3.4′)

if and only if
AL(x)tAL(y) ≤ AL(x− y) ∧AL(xy)

and
AU (x)tAU (y) ≤ AU (x− y) ∧AU (xy) for any x, y ∈ R. ¥

Corollary 5.2 [4,Proposition 6.2]. Let R be a ring and let 0̃ 6=
A ∈ D(I)R. Then A is an IVR in R if and only if AL(x) ∧ AL(y) ≤
AL(x− y) ∧AL(xy) and AU (x) ∧AU (y) ≤ AU (x− y) ∧AU (xy) for any
x, y ∈ R.

Definition 5.3. Let R be a ring and let 0̃ 6= A ∈ D(I)X be a t-IVR in
R. Then A is called a:

(1) t-interval-valued fuzzy left ideal (in short, t-IV LI) in X if
AL(xy) ≥ AL(y) and AU (xy) ≥ AU (y) for any x, y ∈ R.

(2) t- interval-valued fuzzy right ideal (in short, t-IV RI) in R if
AL(xy) ≥ AL(x) and AU (xy) ≥ AU (x) for any x, y ∈ R.

(3) t-interval-valued fuzzy ideal (in short, t-IV I) in R if it is both
t-IVLI and t-IVRL in X.

Proposition 5.4. Let R be a ring and let 0̃ 6= A ∈ D(I)R such that
A(0) = 1. Then A is a t-IVI [resp.t-IVLI, t-IVRI] in R if and only if
AL(x − y) ≥ AL(x)tAL(y), AU (x − y) ≥ AU (x)tAU (y) and AL(xy) ≥
AL(x)stA

L(y)[≥ AL(y),≥ AL(x)], AU (xy) ≥ AU (x)stA
U (y)[≥ AU (y),≥
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AU (x)] for any x, y ∈ R.

Proof. It is obvious from Proposition 4.2 and Definition 4.3.

Corollary 5.4 [4, Proposition 6.5]. Let R be a ring and let 0̃ 6=
A ∈ D(I)R. Then A is an [resp. IVLI, IVRI] in R if and only if
AL(x− y) ≥ AL(x)∧AL(y), AU (x− y) ≥ AU (x)∧AU (y) and AL(xy) ≥
AL(x)∧AL(y)[≥ AL(y),≥ AL(x)], AU (xy) ≥ AU (x)∧AU (y)[≥ AU (y), >
AU (x)] for any x, y ∈ R.

Proposition 5.5. Let R be a skew field and let 0̃ 6= A ∈ D(I)R. Then
A is a t-IVI in R if and only if

(1) A(x) = A(e), for each x ∈ R-{0},
(2) AL(0) = AL(0)stA

L(x) ≥ AL(x)tAL(e)
and

AU (0) = AU (0)stA
U (e) ≥ AU (x)tAU (e) for each x ∈ X,

(3) AL(e) = AL(e)stA
L(e) and AU (e) = AU (e)stA

U (e).

Proof. (⇒): Suppose A is a t-IVI in R and let 0 6= x ∈ R. Then
AL(x) = AL(xe) ≥ AL(x)stA

L(e) [By Proposition 5.4]
= AL(e)stA

L(x) ≥ AL(e)st0
= 1− (1−AL(e))t(1− 0)
= 1− (1−AL(e)) = AL(e) = AL(x−1x)
≥ AL(x−1)stA

L(x) = AL(x)stA
L(x−1)

≥ AL(x)st0 = AL(x).
So AL(x) = AL(e). Similarly, we can see that AU (x) = AU (e) for each
x ∈ R-{0}. Hence, the condition (1) holds.

Let x ∈ R. Then
AL(0) = AL(x0) ≥ AL(x)stA

L(0)
= AL(0)stA

L(x) ≥ AL(0)st0 = AL(0)
= AL(0)stA

L(0) = AL(e− e)stA
L(e− e)

≥ [AL(e)tAL(e)]st[AL(e)tAL(e)]
≥ [AL(e)tAL(e)]st0 = AL(e)tAL(e).

Thus AL(0) = AL(0)stA
L(x) ≥ AL(x)tAL(e). Similarly, we can see that

AU (0) = AU (0)stA
U (x) ≥ AU (x)tAU (e). So the condition (2) holds.

Now let 0 6= x ∈ R. Then, by (1),
AL(e) = AL(x) = AL(xe) ≥ AL(x)stA

L(e)
= AL(e)stA

L(e) ≥ AL(e)st0 = AL(e).
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Thus AL(e) = AL(e)stA
L(e). Similarly, we can see that AU (e) =

AU (e)stA
U (e). So the condition (3) holds.

(⇐) : Suppose the necessary condition hold and let x ∈ R. Since
AL(0) = AL(−0) and AU (0) = AU (−0), let x 6= 0. Then, by (1),

AL(x) = AL(e) = AL(−x)
and

AU (x) = AU (e) = AU (−x).
Thus

AL(−x) = AL(x) and AU (−x) = AU (x) for each x ∈ X, (6.1)
Let x, y ∈ R.
Case (i): Suppose x + y 6= 0 with y 6= 0. Then
AL(x + y) = AL(x + y)t1
≥ AL(x + y)tAL(x)
= AL(e)tAL(x)
= AL(y)tAL(x) (by (1))
= AL(x)tAL(y) (by (1))

Similarly, we can see that AU (x + y) = AU (x)tAU (y).
Case(ii) : Suppose x + y = 0 with x = 0. Then
AL(x + y) = AL(0) = AL(0)t1 ≥ AL(0)tAL(y)
= AL(x)tAL(y)

Also, we can see that AU (x + y) = AU (x)tAU (y).

Case(iii) : Suppose x + y = 0 with 0 6= x = −y. Then
AL(x + y) = AL(0) ≥ AL(e)tAL(e) (by (2))
= AL(x)tAL(−y) (by (1))
= AL(x)tAL(y). (by (6.1))

and
AU (x + y) = AU (0) ≥ AU (e)tAU (e) (by (2))
= AU (x)stA

U (−y) (by (1))
= AU (x)stA

U (y). (by (6.1))
In all, for any x, y ∈ X,AL(x + y) ≥ AL(x)tAL(y) and AU (x + y) ≥
AU (x)tAU (y). (6.2)

Now let x, y ∈ R.
Case(i) : Suppose xy = 0 with, say, x = 0.

Then, by (2),
AL(xy) = AL(0) = AL(0)stA

L(y) = AL(x)tAL(y)
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and
AU (xy) = AU (0) = AU (0)stA

U (y) = AU (x)tAU (y).
Case(ii) : Suppose xy 6= 0. Then, by (1) and (3),
AL(xy) = AL(e) = AL(e)stA

L(e) = AL(x)stA
L(y)

and
AU (xy) = AU (e) = AU (e)stA

U (e) = AU (x)stA
U (y).

In all, for any x, y ∈ R, AL(xy) ≥ AL(x)stA
L(y) and AU (xy) ≥ AU (x)st

AU (y). (6.3)
On the other hand, by (6.3),

AL(xy) ≥ AL(x)stA
L(y) ≥ AL(x)st0

= AL(x) = AL(x)t1 ≥ AL(x)tAL(y)
and

AU (xy) ≤ AU (x)tAU (y) ≤ AU (x)t1
= AU (x) = AU (x)st0 ≤ AU (x)stA

U (y).
So AL(xy) ≥ AL(x)tAL(y) and AU (xy) ≤ AU (x)stA

U (y) for any x, y ∈
R. (6.4) Hence, by (6.1), (6.2), (6.3) and (6.4), A is a t- IVI in R.

Corollary 5.5[4, Proposition 6.7]. Let R be a skew field and let
0̃ 6= A ∈ IVS(R). Then A is an IVI[resp.IVLI, IVRI] in R if and only
if A(x) = A(e) ≤ A(0), ie., AL(x) = AL(e) ≤ AL(0) and AU (x) =
AU (e) ≤ AU (0) for each 0 6= x ∈ R.

Proposition 5.6. Let R be a commutative ring with a unity e. If for
any t-IVI A in R,A(x) = A(e) ≤ A(0), i.e., AL(x) = AL(e) ≤ AL(0)
and AU (x) = AU (e) ≤ AU (0) for each 0 6= x ∈ R, then R is a field.

Proof. Let A be an ideal of R such that A 6= R. Then clearly
A = [χA, χA] is a t-IFI in R such that A 6= 1̃. Then there exists y ∈ R
such that y ∈ A. Thus χA(y) = 0. By the hypothesis, χA(x) = χA(e) ≤
χA(0) for each 0 6= x ∈ R. Thus χA(0) = 1 ie., A = {0}. Hence X is a
field. ¥

Corollary 5.6 [4, Proposition 6.9]. Let R be a commutative ring
with a unity e. If for any IVI A in R, A(x) = A(e) ≤ A(0), ie., AL(x) =
AL(e) ≤ AL(0) and AU (x) = AU (e) ≤ AU (0) for each 0 6= x ∈ R. Then
R is a field.
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