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T-INTERVAL-VALUED FUZZY SUBGROUPS AND
RINGS

HEE WoN KANG*

Abstract. We introduce the concepts of interval-valued fuzzy sub-
groups [resp. normal subgroups, rings and ideals] and investigate
some of it’s properties.

1. Introduction

In 1975, Zadeh[8] suggested the notion of interval-valued fuzzy sets as
another generalization of fuzzy sets. After that time, Biswas[1] applied
it to group theory, and also Kang and Hur[4] applied it to group and ring
theory. Gorzalczany[2] suggested a method of inference in approximate
reasoning by using interval-valued fuzzy sets. Moreover Montal and
Samanta[6] introduced the concept of topology of interval-valued fuzzy
sets and investigate some of it’s properties. Recently, Hur et. al[3]
studies interval-valued fuzzy relations in the sense of a lattice theory. In
this paper, we introduce the concept of t-interval-valued fuzzy subgroups
[resp.normal subgroup, rings and ideals] and investigate some of it’s
properties.

2. Preliminaries

In this section, we list some concepts and results related to interval-
valued fuzzy set theory and needed in next sections.

Let D(I) be the set of all closed subintervals of the unit interval
I =10,1]. The elements of D(I) are generally denoted by capital letters

Received September 14, 2010. Accepted October 23, 2010.

2000 Mathematics Subject Classification : 20N25.

Keywords and phrases. t-norm : t-interval-valued fuzzy subgroup[ring and ideal],
t-interval-valued fuzzy normal subgroup.

* This paper was supported by Woosuk University in 2010.



546 Hee Won Kang”®

M, N,- -, and note that M = [M% MY], where M’ and MY are the
lower and the upper end points respectively. Especially, we denoted , 0
=[0,0], 1 =[1,1], and a = [a, a] for every a € (0,1), We also note that

(i) (YM,N € D(I)) (M = N & Mt = N, MU = NY),
(i) (VM,N € D(I)) (M < N & M* < Nt MV < NU).

For every M € D(I), the complement of M, denoted by M¢, is defined
by M¢ =1—-M =[1 - MY, 1 — M"](See[6]).

Definition 2.1[6,8]. A mapping A : X — D(I) is called an interval-
valued fuzzy set(is short, IVFS) in X, denoted by A = [Al, AV], if
AL AE € 1Y such that A < AV ie., Al(x) < AY(z) for each z € X,
where AL (z)[resp AY(z)] is called the lower|resp upper] end point of
to A. For any [a,b] € D(I), the interval-valued fuzzy A in X defined by

A(x) = [AL(x), AY(x)] = [a,b] for each 2 € X is denoted by [a,b] and if
a = b, then the IVFS [a, b] is denoted by simply @. In particular, 0and 1
denote the interval-valued fuzzy empty set and the interval-valued fuzzy

whole set in X, respectively.

We will denote the set of all IVFSs in X as D(I)X .It is clear that
A =[A, A] € D(I)X for each A € IX.

Definition 2.2[6]. AnIVFS A is called an interval-valued fuzzy point(in
short, IVFP) in X with the support x € X and the value [a,b] € D(I)
with b > 0, denoted by A = z[qy, if for each y € X

[a,b] if y=u=,

Aly) = {

0 otherwise

In particular, if b = a, then x[, ) is denoted by z,.

We will denote the set of all IVFPs in X as IVFp(X) .
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Definition 2.3 [6]. Let A,B € D(I)X and let {A,}aer C D(I)¥
Then:

(i) Ac Biff A < B and AY < BY.

(11)A Biff AC Band B C A.

(iii) A =1 - AY 1 - AL,

(iv) AU B = [Al'v BE, AV v BY).

(iv) | Aa =V AL\ AY]

acl acl acll
(v) AnB = [A¥ A BE AV A BY).

(V)/ ﬂ A = [/\ Agv /\ Ag]
ael acl’ ael

Result 2.B[6, Theorem 1]. Let A, B,C € D(I)* and let {Au}aer C
D(I)*X. Then:

(a) 0 C AcCT.

(b)) AUB=BUA,ANB=BnA.

(¢c) AU(BUC)=(AUB)UC ,ANn(BNC)=(AnB)NC.

(d) ABCAUB,ANBCA,B.
(

e) An(|J 4a) = J (AN An).

acel ael
) AU([) 4a) = [ (AU AL).
ael’ ael

(2) (0 =1, (1)*=0.

(h) (A9)° A,

() (| 4a)* =) 45, ([ 4a)° = | 45

ael ael acl ael
Definition 2.4[6]. Let A € D(I)*X and let xj; € IVFp(X). Then
xys is said to belong to A, denoted by zy € A, if MY < A¥(x) and
MY < AY(z) for each x € X.
It is obvious that A = U xpy and zpy € Aif and only if 2,1 € AL
T EA

and z,,u € AY.

Definition 2.5[7]. A t-norm is a mapping t : [ x I — [ satisfing the
following conditions : for any z,vy, z,u,v € I

(i) t(z,y) = t(y, z),i.e., xty = ytx.

(ii) xt(ytz) = (zty)tz.

(iii) If z < w and y < v, then xty < utv
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In particular, if y < v, then zty < xtv.
(iv) 2tl = z and zt0 = 0.

t-norms which are frequently encountered are :
(a) ztoy = min{z,y} for z,y € I.
(b) xt1y = Prod{z,y} = zy for z,y € I.
(c) xtoy = max{z +y — 1,0} for z,y € I.

Definition 2.6[7]. A t-conorm or s-norm is a mapping s; : I — [
defined by : for any u,v € I,
usiv =1 — (1 —u)t(l —v).

It is clear that s; satisfies the following conditions : for any x,y, z,u,v €
1.

(i) zsiy = ys.

(i) zse(ysiz) = (xs1y)sez.

(i) If < w and y < v, then zsy < uspw
In particular, if y < v, then zs;y < xssv.

(iv) 5,0 = x and zs;1 = 1.

t-conorms corresponding to the above t-norms tg, t1, to are as follows:
(&) zspy = max{x,y} for any =,y € I.
(b") zs1y =z +y — xy for any x,y € 1.
(¢) xs9y = min{l,z + y} for any x,y € I.

3. t-interval-valued fuzzy subgroupoids

Definition 3.1. Let (G,-) be a groupoid and let A, B € D(I)“. Then
the interval-valued fuzzy product of A and B under t-norm t (in short,
t-interval-valued fuzzy product of A and B), denoted by A o, B, is an
IVFES in G defined as follows : For each x € G,

[\ AE@BE)], \ AV UBY ()] i gz —a
(A O¢ B)(ﬁ) = yym sz
0 otherwise.

It is clear that (D(1)%, o) is a groupoid.
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Proposition 3.2. Let "o;” be same as above, let z),yn € IVFp(G)
and let A, B € D(I)“. Then:

(a) s ot yn = (TY) et MUENU]-

(a) Aoy B = U TM Ot YN -
rpEAYNEDB

Proof. (a) Let z € G. Then

[ \/ (e (2') Ayne(y'), \/ (zpw (@) Ayno (')

oyl oyl

z=x'y z=x'y
(xM Ot yN)(Z) - if x/y/ — 2,
0 otherwise.
[MEtNE MYINY] if 2 =ay
N 0 otherwise.
= (l’y)[MLtNL,MUtNU]
(b) Let C = U TM Ot YN, i'e'a
Ty EAYNED
C=| \/ (Zpre ot Yne), \/ (zpv ot yyu)l-
x]wL GALnyL GBL x]wU EAU#/NU GBU

For each z € (G, we may assume that Ju,v € X such that uwv = z,
ry(u) # 0 and yy(v) # 0, ie., 2y (u) > 0,2V < 1 and yn*(v) >
0,y1Y (v) < 1, whitout loss of generality. Then

(Ao B)E(z) = \/ [A"(u)tB" (v)]

Z=Uuv

> \/ ( \/ [ L (w)tyyz(v)]) [Since ¢ is increasing]

E=UY x4 GAL,yNL eBL

= ( U Tpre Ot YnL)

xA{LGAL,yNLEBL

= CL(2).
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Since uyg(y) € A and vp(,,) € B,

CH(z) = V (V feae (@)tyye (0)])

Ty L EAL,yNL eBL z=uv

- \/ ( \/ [z (w)tyne (v)])

F=uv m]wL GAL,?JNL GBL

> \/ [uaL () (WtvgL () (V)]

Z=uv

=\ A (W)tB (v)]

Z=uv
= (Ao B)L(Z).
Thus (A o, B)* = C*. By the similar arguments, we have (A o; B)U =
cyY.
Hence
AOtB: U TpL Ot YNL- |

TarL eAL7yNL €BL

Remark 3.2. Proposition 3.2 is the generalization of Proposition 3.2 in

[4].
The following is the immediate result of Definition 3.1.

Proposition 3.3. Let (G,-) be a groupoid, and let "o,” be same as
above.

(a) if 7-” is associative[resp. commutative] in G, then so is "o;” in
D(I)C.

(b) if 7-” is has an identity e € G, then e; € IVFp(G) is an identity
of 70" in D(I), i.e., Aogey = A =eg oy A for each A € D(I)C.

Definition 3.4. Let (G, ) be a groupoid and let 0£Ac D(I). Then
A is called an interval-valued fuzzy subgroupoid (in short, t-IVGP) in
Gif Aoy AC A, ie., Al oy AL ¢ AL and AV o, AV c AV.

It is clear that 0 and 1 are both t-IVGPs in G.

The followings are the immediate results of Definitions 3.1 and 3.4.
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Proposition 3.5. Let (G,-) be a groupoid and let 0 # A € D(I)%.
Then the followings are equivalent:

(a) Ais at-IVGP in G.

(b) For any xps,yn € A, xproryn € A, d.e., (4, 04) is a groupoid.

(c) For any =,y € G, Al(zy) > AL(x)tAX(y) and AY(xy) >
AY(2)tAY (y).

Remark 3.5. Proposition 3.5 is the generalization of Proposition 3.5 in

[4].

Proposition 3.6. Let A be a t-IVGP in a groupoid (G, -).

7

(a) If 7.7 is associative in G, then so is "o; ” in A, i.e., for any
Tr,Ym, 2N € A,
xr, ot (Ym ot 2n) = (TL ot Ym) ot 2N
(b) If 77 is commutative in G, then so is ”o;’
rr,ym € A,

" in A, i.e., for any
LLOtYM = YM ©t TL-

(c) If 7" has an identity e € G, then
e1 0t Ty, = x, = T, or €1, Vrp € A.

Remark 3.6. Proposition 3.6 is the generalization of Proposition 3.6 in

[4].
From Proposition 3.5, we can define a t-IVGP in G as follows.

Definition 3.4’. An interval-valued fuzzy set A in G is called a t-
interval-valued fuzzy subgroupoid(in short, t-IVGP) in G if
AL (zy) > AF(2)tAL(y) and AY(2y) > AY(2)tAY(y), Vz,y € G.

The following is the immediate result of Definition 3.4’
Proposition 3.7. Let T be a subset of a groupoid (G,-). Then A =
[X7, x7| is a t-IVGP in G if and only if T is a subgroupoid of G, where

xT is the charecteristic function of 7T'.

Remark 3.7. Proposition3.7 is the generalization of Proposition 3.7 in

[4].
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Definition 3.8[7]. A t- norm ¢ is said to be continuous if t : I x I — I
is continuous with respect to the usual topologies.

It is clear that tg, t; and t5 are all continuous ¢-norms.

Proposition 3.9. Let {A,}aer be any family of ¢-IVGPs in a groupoid

(G,-). If t is continuous, then ﬂ Ag is a t-IVGP in G.
ael

Proof. Let A = ﬂ Ay and let z,y € G. Then

acl’
= N\ Al(ay)
a€cl
> N\ [AL(2)tAL(y)]. [ Since A, is a t-IVGP in G]
acl
Since t is continous, ¢ is continuous at (A, cp Aa L(x), A, er aL(y)). Let

€ > 0. Then there exists a § > 0 such that if ry > A o Aa L(z) + 6 and

2 > Nger Ao (y) + 6, then ritry > (Ager Aa”(2))tH(Aac rAaL( ) +
e. Let us choose oy € T such that A, *(z) > Naer Ago®(z) + 6 and

AaoL(y) > /\ae]_" AaL(y) + 6. Then

Aao"(@)tAay™ (y) 2 (Aser Aa™(@))H(Vaer A" () + €.
Thus

/\aeF[AaoL(m)tAaoL@)] > (/\aGF AocL(@"))t(\/aeF AaL(y))-
So
Nacr[A5 (@) A AL W)] = (Naer A (@)HNaer AS) ()=A" (2)t A (y).

Similarly, we can see that AY(zy) > AY(z)tAY(y). Hence ﬂ A is a

ael
t-IVGP in G. |

Remark 3.9. Since t9 = 7 A” is continuous, Proposition 3.9 is the
generalization of Proposition 3.8 in [4].

4. t-interval-valued fuzzy subgroups
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Definition 4.1. Let be a group and let A € D(I)¥. Then A is called
an interval-valued fuzzy subgroup under a t-norm ¢ (in short, t-IVG)
in G if it satisfies the conditions : For any x,y € G,

(i) A*(zy) > AF(2)tA"(y) and AY (zy) < AY(2)tAY(y),

(i) A¥(z=1) > Al(z) and AV (z~1) > AY(x).

Proposition 4.2. Let A be a t-IVG in a group G. Then A(z~!) = A(x)
for each x € G.

Proof. Let x € G. Then
Ab(z) = AH((a™h)7h) 2 AM@™Y) 2 Al ()
and
AV(@) = AV((2~H) 1) = AV > AY().
Thus AX(z~1) = Al(2) and AY(27!) = AY(x). So A(x~! = A(x) for
each r € X. [ ]

Proposition 4.3. If A is a ¢-IVG in a group G, then H = {z € G :
A(x) = 1} is a subgroup of G.

Proof. Let z,y € H. Then
Al (zy™1) > Al(2)tAL(y~Y) = AL(2)tAl (y) = 111 =1
and
AY(zy=Y) > AV (2)tAY (y= 1) = AY(2)tAY (y) = 1t1 = 1.
Thus A (zy=!) = 1 and AY(xy~!) = 1. So xy~! € H. Hence H is a
subgroup of X. |

Proposition 4.4. If Ais a t-IVG in a group G and if there is a sequence
z, in X such that lim,, ., A"(z,)tA"(z,) =1 and lim, ., AY (z,)tAY
(zn) =1, then A(e) = 1, where e is the identity in G.

Proof. Let x € G. Then

Al(e) = Al (za™b) > AL (2)tAF(271) = AL(2)tAL(2)
and

AY(e) = AV (zaz™1) > AV(2)tAY (271) = AV (2)tAY (2).
Then, for each n,

AL(e) > AL (z,)tAE (z,,)
and

A'(e) > A%(xp)t A% (xy).
On the other hand,

1> Al(e) > limy, oo AX (2t AR (2,) = 1
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and

1> AY(e) > limy,—, 00 AY (z,)tAY (2,) = 1.
Hence A(e) =1 [ |
Proposition 4.5. Let A be a t-IVG in a group G. If A(zy~!) = 1,
then A(x) = A(y).

Proof. Let z,y € G. Then
Al(z) = AM((zy~Y)y) > A (zy=)tA M (y) = 1A (y)
= Ab(y) = Ab(y™!) = AL (@ (ay ™))
> Al (a=OtAE (zy™h) = Al (2)tl = AX(x)

= AY((zy~1y) = AV (zy~ AT (y) = 1tAY(y)

= AY(y) = AV(y~) = A (2" (ay ™))

> AV (z=)tAY (zy~ 1) = AV (2)t1 = AY(x).

Hence A(z) = A(y). [ |

Proposition 4.6. Let G be a group and let 0 # A € D(I)¢ with
A(e) = 1. Then A is a t-IVG inG if and only if A*(zy~1) > Al (2)tAX(y)
and AY (xy~1) > AY(2)tAY (y) for any x,y € G.

Proof. (=): Suppose A is a t-IVG in G and let x,y € G. Then, by
Proposition 4.2, A" (zy~!) > AF(2)tAL(y) and AY (zy~1) > AV (2)tAY (y).
(«<): Suppose the necessary conditions hold and let z,y € G. Then
Ab(z71) = Al(ex™!) > Al(e)tAl ()
= 1tA"(z) = Al (x)
and
AY(z7) = AV(ex™1) > AY(e)tAY (z)
= 1tAY(z) = AY ().
So A¥(z=1) > Al(z) and AY(z~!) > AY(z) for each z € G.
On the other hand,
Al(zy) = AL(a(y ™)) > AL(@)eAb ()
> AL(z)tAL(y)
and
AY(zy) = AV(2(y~ 1)) = AY(2)tAY (y )
> AV (2)tAY (y).
Hence A is a t-IVG in G. |

Proposition 4.7. Let G, be the cyclic group of prime order p and let
A € D(I)% with A(e) = 1, where e is the identity in G,. If A(z) =
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A(a) < Ale), for each e # x € G, where G, = (a) = e = a’,al,a?,- - - aP}
then A is a t-IVG in G),.

Proof. Let x,y € G,,.
Case(i) : Suppose = # e, y # e and xy~ ' # e. Then, by the hypoth-
esis,

Ab(zy™) = Ak (x) = Al(y)

and

AV(zy™!) = AY(z) = AY(y).
Thus

Al (ay™h) > AF(2)tAl (y)
and

AV(ay™) > AV (@)t ().

Case(ii) : Suppose z # e, y # e and zy~! = e. Then, by the
hypothesis,

Al (z) = Al(y) < AF(e) = Al (zy™)
and

AV (z) = AU(y) < AV () = AV (ay ).
Thus

Al(zy™") > AM(x)t Al (y)
and

AV(zy™h) > AV (2)tAY(y).

Case(iii) : Suppose z # e, y = e and xy~! # e. Then, by the
hypothesis,

Al(z) = Al(zy™") < Al(e) = AM(y) =1

and

AV (2) = AV(ay~1) < AU(e) = AV (y) = 1.
Thus

AL(y~1) = AL(2)t1 = AL(2)tAL(y)
and

AY(zy=1) > AY(2)t1 = AL (2)tAY (y).
Case(iv) : Suppose x = e, y # e, 2y~ ' # e. Then it is the same as
case (iii).
In all,
Al(ey™Y) = AH(@)AM(y)
and
AY(zy™") = AY(2)tAY (y).
Hence A is a t-IVG in G),. |
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Definition 4.8. Let A be a t-IVG in a group G. Then A is called a
t-interval-valued fuzzy normal subgroup (in short, t-IVNG) in G if
A(zy) = A(yz) for any z,y € X.

Proposition 4.9. Let A be a t-IVNG in a group G.
(a) For each B € D(I)%, Ao, B= Bo; A.
(b) If B is a t-IVG in G, then so is B o; A.

Proof. (a) Let z € G with z = zy. Then
(A Ot B)L(Z> = \/xy:z AL(x)tBL(y)
= Vyesy-1 A% (2)tB*(y)
= Vo1 A¥(zy " )tB (y)
= Varoy-1. AX (@)t B (y)
(Since A is a t-IVNG in G)
=V yar—. BY)tA" (2') = (B oy A)L.
Similarly, (A o, B)U(z) = (B oy, A)U(z). So Aoy B= Bo; A. [ |

(b) By Definition 3.4 and (a),
(BoyA)oy (Boy A)=Boy (Ao B)oy A
:BOt(BOtA)OtA
= (Bo;B)oy (Ao, A) C Bo, A.
Thus B o; A is a t-IVGP in G. Now let 2 € G with 27! = yz.
Then

(Bog A)F(a~t) = Vyz o1 BY(y)tAR(2)

= Voo BH(y™H) A=) 7

2 Vi1 BHy~ ARG

=Voeoryn AMGETHEBE (YY)
= (Ao B)H(z) = (B oy A)f(x). (By (a)).

Similarly, we have (B o; A)Y(z71) > (B oy A)Y(x).

Hence Bo; Ais a t-IVG in G. [ |

(2~
(y

5. t-interval-valued fuzzy rings and ideals

Definition 5.1. Let (R, +, ) be aring, let ¢ be a t-interval-valued fuzzy
subring (in short, t-IVR) in R if it satisfies the following conditions:

(i)A is a t-IVG in R with respect to ” +” (in the sense of Definition
4.1),
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(ii) Ais a t-IVGP in R with respect to ” -” (in the sense of Definition
3.4 or Definition 3.4").

Proposition 5.2. Let R be a ring and let 0 # A € D(I)® such that
A(0) = 1 where 0 is the zero element for ” +” in R. Then A is a t-IVR
in R if and only if any z,y € G.

A (x)tAM(y) < Al (e —y) A AP (zy)
and

AY(x)tAY (y) < AV (z —y) A AY (zy)

Proof. AisatIVR in R
if and only if
Al(z —y) > AM(2)tA(y), AY(x —y) = AY(2)tA"(y)
(by Proposition 4.6)
and
Al(zy) > AM@)tAL(y), AV(zy) > AU(2)tAV (y) for any 2,y € R
(by Definition 3.4)
if and only if
Al (2)tAM(y) < Az —y) A AL (zy)
and
AY(2)tAY (y) < AY(x — y) A AY (zy) for any z,y € R. [

Corollary 5.2 [4,Proposition 6.2]. Let R be a ring and let 0 #
A € D(I)®. Then A is an IVR in R if and only if AX(z) A AF(y) <
Al (z —y) A AF(zy) and AY (z) A AY(y) < AY(z — y) A AY(zy) for any
xz,y € R.

Definition 5.3. Let R be a ring and let 0 # A € D(I)X be a t-IVR in
R. Then A is called a:

(1) t-interval-valued fuzzy left ideal (in short, t-IVLI) in X if
AL (zy) > AF(y) and AY (zy) > AY(y) for any x,y € R.

(2) t- interval-valued fuzzy right ideal (in short, t-IVRI) in R if
AL (zy) > Al (z) and AY (zy) > AY(z) for any x,y € R.

(3) t-interval-valued fuzzy ideal (in short, t-IVI) in R if it is both
t-IVLI and ¢-IVRL in X.

Proposition 5.4. Let R be a ring and let 0 # A € D(I)® such that
A(0) = 1. Then A is a tIVI [resp.t-IVLI, t-IVRI] in R if and only if
Al(z —y) > AM(x)tAl(y), AY(z —y) > AY(2)tAY (y) and AF(zy) >
Al (@) AP (y)[= AT (y), = AP (2)], AT (zy) = AY(2)s: A7 (y)[= AV (y), =
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AY(z)] for any z,y € R.
Proof. It is obvious from Proposition 4.2 and Definition 4.3.

Corollary 5.4 [4, Proposition 6.5]. Let R be a ring and let 0 +

A € D(I)®. Then A is an [resp. IVLI, IVRI] in R if and only if

Ab(z —y) > Al(z) NAL(y), AY(z —y) > AY(z) A AY(y) and AL (zy) >

Ab(@)nAL(y)[= AL(y), > AL (2)], AY (zy) > AY () AAY (y)[> AY(y), >
Y(z)] for any z,y € R.

Proposition 5.5. Let R be a skew field and let 0 # A € D(I)*. Then
Ais a t-IVI in R if and only if

(1) A(xz) = A(e), for each z € R-{0},

(2) AL(0) = AL(0)s; AL () > AL (2)tAE(e)
and

AY(0) = AY(0)s;AY (e) > AY(2)tAY (e) for each z € X,

(3) AL(e) = AL(e)s;AL(e) and AY(e) = AY(e)s;AY (e).

Proof. (=): Suppose A is a t-IVI in R and let 0 # = € R. Then
r) = AF(ze) > AL (x)s; A (e) [By Proposition 5.4]
)si Al (z) > Al (e)s:0
— 1 (1 AL(e))i(1 - 0)
=1—(1—AF(e)) = A¥(e) = AF(z7'a)
> ALz N s Al (z) = AP ()8 AP (7))
> Ab(z)8,0 = AL ().
So Al(x) = AL (e). Similarly, we can see that AY(z) = AY(e) for each
x € R-{0}. Hence, the condition (1) holds.
Let z € R. Then
AF(0) = AP (20) > A" (2)5.A%(0)
= AL(0)s; AF(z) > AF(0)s,0 = AL(0)
= AL(0)s,A%(0) = AL(e —e)si Al (e —e)
> [AL(e)tAR(e)]se[ A (e)t A (e)]
> L4 )4 ol = 40140,
Thus AF(0) = AL(0)s, A (z) > AL (2)tAF(e). Similarly, we can see that
AY(0) = AY(0)s, AV (x) > AY(2)tAY(e). So the condition (2) holds.
Now let 0 # x € R. Then, by (1),
Ab(e) = AL(z) = Al (xe) > AL ()5, AL (e)
= Al(e)si Al (e) > AF(e)s;0 = AL(e).

AAG}
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Thus Al(e) = AL(e)s;A(e). Similarly, we can see that AY(e) =
AY(e)s;AY(€). So the condition (3) holds.

(<) : Suppose the necessary condition hold and let x € R. Since
AE(0) = AX(—0) and AY(0) = AY(-0), let = # 0. Then, by (1),
Al (z) = Al(e) = AF(—x)
and
AY(z) = AY(e) = AV (—x).
Thus
AF(—z) = AL(z) and AY(—z) = AY(z) for each v € X, (6.1)
Let z,y € R.
Case (i): Suppose = +y # 0 with y # 0. Then
Al (z 4+ y) = A (z +y)t1
> A%z + y)tA ()
= Al(e)tAl(x)
— Al(y)tAL(z) (by (1))
— AM()tAL(y) (by (1))
Similarly, we can see that AV (x +y) = AV (x)tAY (y).
Case(ii) : Suppose = + y = 0 with z = 0. Then
Al (z 4+ y) = AE(0) = AF(0)t1 > AL(0)tAL(y)
— AL()tA ()
Also, we can see that AY(x +y) = AV (2)tAY (y).

Case(iii) : Suppose z +y = 0 with 0 # x = —y. Then
Az +y) = AH(0) = Al (e)tA™(e) (by (2))
= Al (2)tA"(~y) (by (1))
= Al (2)tA"(y). (by (6.1))
and
AV(z 4 y) = AV(0) > AU(e)tAV (e) (by (2))
— AV (2)siAY (—y) (by (1))
= AY(z)s:AY(y). (by (6.1))
In all, for any z,y € X, Al(x
AY(2)tAY (y). (6.2)
Now let z,y € R.
Case(i) : Suppose zy = 0 with, say, = = 0.
Then, by (2),
Al(zy) = AL(0) = AP(0)s, A (y) = AL(2)tA (y)

+y) = AM(@)tAM(y) and AY(z +y) >
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and
AV (wy) = AY(0) = AY(0)s:A" (y) = AY (2)tAY (y).
Case(ii) : Suppose zy # 0. Then, by (1) and (3),
Al (zy) = Al (e) = A (e)si A" (e) = A" (2)s: A (y)
and
AY(zy) = AY(e) = AY(e)s;AY (e) = AV (2)s5:AY (y).
In all, for any z,y € R, Al (xy) > AF(2)s; AL (y) and AY (zy) > AV (z)s,
AY(y). (6.3)
On the other hand, by (6.3),
Al (ay) > AF(x)s: A (y) > AF(2)s,0
= Al(x) = Al (2)t1 > Al (2)tAl(y)

and

s

Ulxy) < AV(2)tAY (y) < AV(z)t1
=AY AY(2)8,0 < AY(2)s5,AY ().

(z) =
So Al(xy) > AL(2)tAF(y) and AY(zy) < AY(z)s;AY(y) for any z,y €
R. (6.4) Hence, by (6.1), (6.2), (6.3) and (6.4), A is a t- IVI in R.

Corollary 5.5[4, Proposition 6.7]. Let R be a skew field and let
0# A € IVS(R). Then A is an IVI[resp.IVLI, IVRI] in R if and only
if A(x) = A(e) < A(0), ie., AL(z) = Al(e) < AL(0) and AY(z) =
AY(e) < AY(0) for each 0 # x € R.

Proposition 5.6. Let R be a commutative ring with a unity e. If for
any t-IVI A in R, A(x) = A(e) < A(0), ie., AF(z) = Al(e) < AL(0)
and AY(z) = AY(e) < AY(0) for each 0 # x € R, then R is a field.

Proof. Let A be an ideal of R such that A # R. Then clearly
A = [xa,xa| is a t-IFT in R such that A # 1. Then there exists y € R
such that y € A. Thus xa(y) = 0. By the hypothesis, x4(x) = xa(e) <
x4(0) for each 0 # z € R. Thus x4(0) =1 ie., A ={0}. Hence X is a
field. [ |

Corollary 5.6 [4, Proposition 6.9]. Let R be a commutative ring
with a unity e. If for any IVI A in R, A(x) = A(e) < A(0), ie., Al (z) =
AL(e) < AF(0) and AY(z) = AY(e) < AY(0) for each 0 # 2 € R. Then
R is a field.
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