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PRECISE ASYMPTOTICS IN LOGLOG LAW FOR
ρ-MIXING RANDOM VARIABLES

Dae Hee Ryu

Abstract. Let X1, X2, · · · be identically distributed ρ-mixing ran-
dom variables with mean zeros and positive finite variances. In this
paper, we prove

lim
ε↓0

ε2
∞∑

n=3

1

n log n
P (|Sn| ≥ ε

√
n log log n) = 1,

lim
ε↓0

ε2
∞∑

n=3

1

n log n
P (Mn ≥ ε

√
n log log n) = 2

∞∑

k=0

(−1)k

(2k + 1)2

where Sn = X1 + · · ·+ Xn, Mn = max1≤k≤n |Sk| and σ2 = EX2
1 +

2
∑∞

i=2 E(X1, Xi) = 1.

1. Introduction
Let X,X1, X2, · · · be i.i.d. random variables with common distri-

bution function F , mean zeros and positive finite variances, and set
Sn = X1 + · · ·+Xn, n ≥ 1. Baum and Katz(1965) proved that for p < 2
and r ≥ p,

(1.1)
∞∑

n=1

n
r
p
−2

P (|Sn| ≥ εn
1
p ) < ∞, ε > 0

if and only if E|X|r < ∞ and, when r ≥ 1, EX = 0. For r = 2 and p = 1,
the result reduces to the theorem of Hsu and Robbins(1947, sufficiency)
and Erdös(1949, necessity). For r = p = 1, the famous theorem of
Spitzer(1956) was rediscovered. In view of the fact that the sums tend
to infinity as ε ↓ 0, it is of interest to find the rate, that is, one would
be interested in finding appropriate normalizations in terms of functions
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of ε that yield non-trivial limits. Toward this end, Heyde(1975) proved
that

lim
ε↓0

ε2
∞∑

n=1

P (|Sn| ≥ εn) = EX2,

whenever EX = 0 and EX2 < ∞. By replacing n
1
p in (1.1) by

√
n log n,

corresponding results have been given in Gut and Spătaru(2000, Theo-
rem 3).

At this point many papers try to establish similar results related to
the law of the iterated logarithm. Sums analogous to those of (1.1) have
been considered by Davis(1968). The following result holds: for the
sufficiency, see Davis(1968, Theorem 4); for the necessity, see Gut(1980,
Theorem 6.2): Suppose that EX = 0 and that EX2 = σ2 < ∞. Then

(1.2)
∞∑

n=3

1
n

P (|Sn| ≥ ε
√

n log log n) < ∞, ε > σ
√

2.

Conversely, if the sum is finite for some ε, then EX = 0 and EX2 < ∞.
Recently, Gut and Spătaru(2000) proved the precise asymptotics in

the law of the iterated logarithm for i.i.d. random variables as follows:
Suppose that EX = 0 and that EX2 = σ2 < ∞. Then

(1.3) lim
ε↓0

ε2
∞∑

n=3

1
n log n

P (|Sn| ≥ ε
√

n log log n) = σ2.

In this paper, we consider the precise asymptotics in the law of the
iterated logarithm for identically distributed ρ-mixing random variables.

Suppose that {Xn, n ≥ 1} is a sequence of random variables on a
probability space (Ω,F ,P), set F−n = σ(Xi : 1 ≤ i ≤ n), F+

n = σ(Xi :
i ≥ n),

(1.4) ρ(n) = sup
k≥1

sup
X∈L2(F−k )

sup
Y ∈L2(F+

k+n)

|EXY − EXEY |√
V ar(X)V ar(Y )

,

the sequence {Xn, n ≥ 1} is said to be ρ-mixing if ρ(n) → 0 as n →∞.
This definition was introduced by Kolmogorov and Rozanov(1960), and
the limiting behaviors of ρ-mixing sequences have received more and
more attention recently.(See Ibragimov(1975), Peligrad(1987), Bradley
(1988), Lin and Lu(1996), Huang et al.(2005) and Zhao(2008)).

2. Preliminaries
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Now we assume that {Xn, n ≥ 1} is a sequence of identically dis-
tributed random variables with mean zeros and finite variances. Without
loss of generality we assume that σ2 = EX2

1 + 2
∑∞

j=2 Cov(X1, Xj) = 1.
Put b(ε) = exp{exp(M/ε2)}, where M > 1.
Lemma 2.1(Ibragimov(1975)) Let {Xn, n ≥ 1} be a sequence of
strictly stationary ρ-mixing random variables with EX1 = 0 and EX2

1 <
∞. Assume that σ2 = EX2

1 +2
∑∞

j=2 Cov(X1, Xj) < ∞ and
∑∞

n=1 ρ(2n)
< ∞. Then

Sn

σ
√

n
→D N(0, 1) as n →∞,

where Sn = X1 + · · ·+ Xn and →D means convergence in distribution.

Lemma 2.2(Shao(1995)) Let {Xn, n ≥ 1} be a sequence of ρ-mixing
random variables with EXn = 0. Then, for any q ≥ 2, there exists
K(q, ρ(·)) depending only on q and ρ(·) such that

P ( max
1≤k≤n

|Sk| ≥ x)

≤
n∑

i=1

P (|Xi| ≥ y) + Kx−qn
q
2 exp(K

[log n]∑

i=1

ρ(2i)) max
1≤i≤n

‖XiI(|Xi| ≤ y)‖q
2

+Kx−qn exp(K
[log n]∑

i=1

ρ2/q(2i)) max
1≤i≤n

E|Xi|qI(|Xi| ≤ y)

for any x > 0 and y > 0 with 2nmax1≤i≤n E|Xi|I(|Xi| ≤ y) ≤ x.

Proposition 2.3 Let N be a standard normal random variable. Then

lim
ε↓0

ε2
∑

n≥3

1
n log n

P (|N | ≥ ε
√

log log n) = 1.

Proof By the fact that
∫∞
0 2yP (|N | ≥ y)dy = 1, we get
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lim
ε↓0

ε2
∑

n≥3

1
n log n

P (|N | ≥ ε
√

log log n)

= lim
ε↓0

ε2
∫ ∞

3

1
x log x

P (|N | ≥ ε
√

log log x)dx

(letting y = ε
√

log log x)

= lim
ε↓0

∫ ∞

ε
√

log log 3
2yP (|N | ≥ y)dy

= 1.

2

Proposition 2.4(Gut and Spătaru(2000)) Let b(ε) = exp{exp(M/ε2)}
and N be a standard normal random variable. Then, we have uniformly
with respect to all sufficiently small ε > 0,

lim
M→∞

ε2
∑

n>b(ε)

1
n log n

P (|N | ≥ ε
√

log log n) = 0.

Lemma 2.5(Lin and Lu(1996)) Let {Xn, n ≥ 1} be a strictly station-
ary sequence of ρ-mixing random variables with EX1 = 0, 0 < EX2

1 <
∞ and

∑∞
n=1 ρ(2n) < ∞. If 0 < σ2 = EX2

1 + 2
∑∞

j=2 Cov(X1, Xj) < ∞,
then Wn ⇒ W , where Wn(t) = (σ

√
n)−1S[nt], 0 ≤ t ≤ 1 and ⇒ means

weak convergence in D[0, 1] with the Skorohod topology. In particular,

Mn

σ
√

n
→D sup

0≤s≤1
|W (s)|.

Proof See Corollary 4.1.1 in Lin and Lu(1996). 2

Lemma 2.6(Billingsley(1968)) Let {W (t), t ≥ 0} be a standard
Wiener process and let N be a standard normal random variable. Then,
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for any x > 0,

P ( sup
0≤s≤1

|W (s)| ≥ x) = 1−
∞∑

k=−∞
(−1)kP ((2k − 1)x ≤ N ≤ (2k + 1)x)

= 4
∞∑

k=−∞
(−1)kP (N ≥ (2k + 1)x)

= 2
∞∑

k=−∞
(−1)kP (|N | ≥ (2k + 1)x).

3. Results

Theorem 3.1 Let {Xn, n ≥ 1} be a sequence of identically distributed
ρ-mixing random variables with EX1 = 0 and 0 < EX2

1 < ∞. Assume
that

∑∞
n=1 ρ(2n) < ∞ and σ2 = EX2

1 + 2
∑∞

j=2 Cov(X1, Xj) = 1. Then

(3.1) lim
ε↓0

ε2
∞∑

n=3

1
n log n

P (|Sn| ≥ ε
√

n log log n) = 1.

To prove Theorem 3.1 we need the following propositions.
Proposition 3.2 Let {Xn, n ≥ 1} be a sequence of identically dis-
tributed ρ-mixing random variables with EX1 = 0 and 0 < EX2

1 < ∞.
Assume that

∑∞
n=1 ρ(2n) < ∞ and σ2 = EX2

1 + 2
∑∞

j=2 Cov(X1, Xj) =
1. Then uniformly with respect to all sufficiently small ε > 0,

(3.2) lim
M→∞

ε2
∑

n>b(ε)

1
n log n

P (|Sn| ≥ ε
√

n log log n) = 0.
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Proof Applying Lemma 2.2 with x = ε
√

n log log n and y = 2ε
√

n log log n,
we have

(3.3)
∑

n>b(ε)

1
n log n

P (|Sn| ≥ ε
√

n log log n)

≤
∑

n>b(ε)

1
n log n

[nP (|X1| ≥ 2ε
√

n log log n)

+ K(ε
√

n log log n)−qn
q
2 exp(K

[log n]∑

i=1

ρ(2i))

(EX2
1I(|X1| ≤ 2ε

√
n log log n))

q
2

+ K(ε
√

n log log n)−qn exp(K
[log n]∑

i=1

ρ
2
q (2i))

(EXq
1I(|X1| ≤ 2ε

√
n log log n))]

= I1 + I2 + I3.

Since k > b(ε) if and only if k < M−1ε2k log log k, it follows that

I1 =
∑

n>b(ε)

1
log n

P (|X1| ≥ 2ε
√

n log log n)

=
∑

n>b(ε)

1
log n

∑

k≥n

P (ε
√

k log log k ≤ |X1|
2

< ε
√

(k + 1) log log(k + 1))

=
∑

k>b(ε)

[
∑

b(ε)<n≤k

1
log n

]P (ε
√

k log log k ≤ |X1|
2

< ε
√

(k + 1) log log(k + 1))

≤
∑

k>b(ε)

M−1ε2k log log kP (ε
√

k log log k ≤ |X1|
2

< ε
√

(k + 1) log log(k + 1))

≤
∑

k>b(ε)

exp(−M/ε2)(k − b(ε))

×P (4ε2k log log k ≤ X2
1 < 4ε2(k + 1) log log(k + 1))

≤ (4M)−1EX2
1
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, which yields

(3.4) lim
M→∞

ε2I1 = 0.

For I2, we estimate, for q > 2

I2 =
∑

n>b(ε)

1
n log n

K(ε2n log log n)−
q
2 n

q
2 exp(K

[log n]∑

i=1

ρ(2i))

×(EX2
1I(|X1| ≤ 2ε

√
n log log n))

q
2

≤ C
∑

n>b(ε)

1
n log n

(ε2n log log n)−
q
2 n

q
2

= Cε−q

∫ ∞

b(ε)

dx

(x log x)(log log x)
q
2

dx

letting y = log log x

= Cε−q

∫ ∞

M
ε2

y−
q
2 dy

=
C

ε2M
q
2
−1

,

which yields

(3.5) lim
M→∞

ε2I2 = lim
M→∞

C

M
q
2
−1

= 0.



532 Dae Hee Ryu

I3 ≤ C
∑

n>b(ε)

(n log n)−1(ε2n log log n)−
q
2 nEXq

1I(|X1|

≤ 2ε
√

n log log n)

≤ Cε−q
∑

n>b(ε)

(log n)−1n−
q
2 (log log n)−

q
2

×
∑

1≤j≤n

EXq
1I(2ε

√
j log log j ≤ |X1|

≤ 2ε
√

(j + 1) log log(j + 1))

≤ Cε−q
∑

j>b(ε)

E|X1|qI(2ε
√

j log log j ≤ |X1|

≤ 2ε
√

(j + 1) log log(j + 1))×
∑

n=j

n−
q
2 (log n)−1

≤ Cε−q
∑

j>b(ε)

j−
q
2
+1(log j)−1(log log j)−

q
2

×EXq
1I(2ε

√
j log log j ≤ |X1| ≤ 2ε

√
(j + 1) log log(j + 1))

≤ Cε−2
∑

j>b(ε)

(log j)−1(log log j)−1

×EX2
1I(2ε

√
j log log j ≤ |X1| ≤ 2ε

√
(j + 1) log log(j + 1))

≤ C

M exp(M
ε2

)
E|X1|2I(|X1| ≥ 2ε

√
b(ε) log log b(ε)).

Notice that, in particular, n > b(ε), it follows that
(3.6)

ε2I3 ≤ Cε2(M exp(
M

ε2
))−1E|X1|2I(|X1| ≥ 2ε

√
b(ε) log log b(ε)) → 0

as ε ↘ 0 and M →∞. Combining (3.3)-(3.6) we obtain (3.2). 2

Proposition 3.3 Let {Xn, n ≥ 1} be a sequence of identically dis-
tributed ρ-mixing random variables with EX1 = 0 and EX2

1 < ∞. As-
sume that σ2 = EX2

1 + 2
∑∞

j=2 Cov(X1, Xj) = 1 and
∑∞

n=1 ρ(2n) < ∞ .
Then
(3.7)

lim
ε↓0

ε2
∑

n≤b(ε)

1
n log n

|P (|Sn| ≥ ε
√

n log log n)−P (|N | ≥ ε
√

log log n)| = 0.
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Proof Write ∆n = supx |P (|Sn| ≥ x
√

n) − P (|N | ≥ x)|, note that
P (|N | ≥ x) is a continuous function for x ≥ 0, and this combined
with Lemma 2.2 yields, for any x ≥ 0 ∆n = supx |P (|Sn| ≥

√
nx) −

P (|N | ≥ x)| → 0 as n → ∞. Then, applying Toeplitz’s lemma(see, e.g.
Stout(1995) p.120) we have

(3.8)
1

log log m

m∑

n=1

∆n

n log n
→ 0 as m →∞,

Hence, using (3.8) we obtain

ε2
∑

n≤b(ε)

1
n log n

|P (|Sn| ≥ ε
√

n log log n)− P (|N | ≥ ε
√

log log n)|

≤ ε2
∑

n≤[b(ε)]

∆n

n log n

= ε2 log log[b(ε)]× 1
log log[b(ε)]

∑

n≤b(ε)

∆n

n log n

≤ M
1

log log[b(ε)]

∑

n≤b(ε)

∆n

n log n
→ 0 as ε ↓ 0.

2

Proof of Theorem 3.1 Theorem 3.1 now follows from Propositions 3.2
and 3.3 and the triangle inequality.

Theorem 3.4 Let {Xn, n ≥ 1} be a sequence of identically distributed
ρ-mixing random variables with with EX1 = 0 and 0 < EX2

1 < ∞. As-
sume that 0 < σ2 = EX2

1 + 2
∑∞

j=2 Cov(X1, Xj) = 1 and
∑∞

n=1 ρ(2n) <
∞. Then

(3.9) lim
ε↓0

ε2
∞∑

n=3

1
n log n

P (Mn ≥ ε
√

n log log n) = 2
∞∑

k=0

(−1)k

(2k + 1)2
.

Proposition 3.5 Let {W (t), t ≥ 1} be a standard Wiener process.
Then,
(3.10)

lim
ε↓0

ε2
∞∑

n=3

1
n log n

P ( sup
0≤s≤1

|W (s)| ≥ ε
√

log log n) = 2
∞∑

k=0

(−1)k

(2k + 1)2
.
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Proof By Lemma 2.6, for any m ≥ 1 and x > 0,

2
2m+1∑

k=0

(−1)kP (|N | ≥ (2k + 1)x) ≤ P ( sup
0≤s≤1

|W (s)| ≥ x)

≤ 2
2m∑

k=0

(−1)kP (|N | ≥ (2k + 1)x),

which yields (3.10) together with Proposition 2.3. 2

From Proposition 2.4 and Lemma 2.6 now we obtain the following
result.

Proposition 3.6 Let {W (t), t ≥ 1} be a standard Wiener process.
Then,

(3.11) lim
M→∞

ε2
∑

n>b(ε)

1
n log n

P ( sup
0≤s≤1

|W (s)| ≥ ε
√

log log n) = 0.

Proof

lim
M→∞

ε2
∑

n>b(ε)

1
n log n

P ( sup
0≤s≤1

|W (s)| ≥ ε
√

log log n)

≤ C
∞∑

k=0

(−1)k

(2k + 1)2
lim

M→∞
ε2

∑

n>b(ε)

1
n log n

P (|N | ≥ ε
√

log log n)

= 0 by Proposition 2.4.

2

Proposition 3.7 Let {Xn, n ≥ 1} be a sequence of identically dis-
tributed ρ-mixing random variables satisfying conditions of Theorem
3.4. Then, uniformly with respect to all sufficiently small ε > 0

(3.12) lim
M→∞

ε2
∑

n>b(ε)

1
n log n

P (Mn ≥ ε
√

n log log n) = 0.

Proof By the similar proof to that of Proposition 3.2, (3.12) follows. 2

Proposition 3.8 Let {Xn, n ≥ 1} be a sequence of identically dis-
tributed ρ-mixing random variables satisfying conditions of Theorem
3.4. Then,

lim
ε↓0

ε2
∑

n≤b(ε)

1
n log n

|P (|Mn| ≥ ε
√

n log log n)− P ( sup
0≤s≤1

|W (s)|



Precise asymptotics in loglog law for ρ-mixing random variables 535

> ε
√

log log n)| = 0.

Proof Denote ∆n = supx |P (Mn ≥ x
√

n) − P (sup0≤s≤1 |W (s)| > x)|.
We can easily get that ∆n → 0 as n →∞ by Lemma 2.5.

Applying Toeplitz lemma[Stout(1995), p. 120], we have

1
log log m

m∑

n=1

∆n

n log n
→ 0, as m →∞.

Hence,

ε2
∑

n≤b(ε)

∆n

n log n

= ε2 log log[b(ε)]× 1
log log[b(ε)]

∑

n≤b(ε)

∆n

n log n

≤ M
1

log log[b(ε)]

∑

n≤b(ε)

∆n

n log n
→ 0 as ε ↘ 0.

2

Proof of Theorem 3.4 By Propositions 3.5-3.8 and triangle inequality
the result (3.9) follows.
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