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THE ROLE OF T (X) IN THE IDEAL THEORY OF
Q-ALGEBRAS

Sun Shin Ahn and Seung Eel Kang

Abstract. In this paper, we introduced a special set, called T -
part, in a Q-algebra X. We also show that the T -part of X is
a subalgebra of X. By using T -part, we provide an equivalent
condition that every ideal is a T -ideal.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras:
BCK-algebras and BCI-algebras ([4,5]). It is known that the class of
BCK-algebras is a proper subclass of the class of BCI-algebras. In [2,3]
Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-
algebras. They have shown that the class of BCI-algebras is a proper
subclass of the class of BCH-algebras. J. Neggers and H. S. Kim ([8])
introduced the notion of d-algebras, i.e., (I) x∗x = 0; (VII) 0∗x = 0; (VI)
x∗y = 0 and y∗x = 0 imply x = y, which is another useful generalization
of BCK-algebras, and investigated several relations between d-algebras
and BCK-algebras, and then investigated other relations between d-
algebras and oriented digraphs. On the while, Y. B. Jun, E. H. Roh and
H. S. Kim ([6]) introduced a new notion, called a BH-algebra, i.e., (I)
x∗x = 0; (II) x∗0 = x; (VI) x∗y = 0 and y∗x = 0 imply x = y, which is
a generalization of BCH/BCI/BCK-algebras, and showed that there
is a maximal ideal in bounded BH-algebras. J. Neggers, S. S. Ahn and
H. S. Kim ([7]) introduced a new notion, called an Q-algebra, which
is a generalization of BCH/BCI/BCK-algebras, and generalized some
theorems discussed in BCI-algebras.

In this paper, we introduced a special set, called T -part, in a Q-
algebra X. We also show that the T -part of X is a subalgebra of X.
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By using T -part, we provide an equivalent condition that every ideal is
a T -ideal.

2. Preliminaries

A Q-algebra ([7]) is a non-empty set X with a constant 0 and a binary
operation “ ∗ ” satisfying axioms:

(I) x ∗ x = 0,
(II) x ∗ 0 = x,

(III) (x ∗ y) ∗ z = (x ∗ z) ∗ y

for all x, y, z ∈ X.
For brevity we also call X a Q-algebra. In X we can define a binary

relation “ ≤ ” by x ≤ y if and only if x ∗ y = 0.

In a Q-algebra X the following property holds:

(IV) (x ∗ (x ∗ y)) ∗ y = 0, for any x, y ∈ X.

A BCK-algebra is a Q-algebra X satisfying the additional axioms:

(V) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(VI) x ∗ y = 0 and y ∗ x = 0 imply x = y,

(VII) 0 ∗ x = 0,

for all x, y, z ∈ X.

Definition 2.1([7]). Let (X; ∗, 0) be a Q-algebra and ∅ 6= I ⊂ X. I
is called a subalgebra of X if

(S) x ∗ y ∈ I whenever x ∈ I and y ∈ I.

I is called an ideal of X if it satisfies:

(Q0) 0 ∈ I,
(Q1) x ∗ y ∈ I and y ∈ I imply x ∈ I.

A Q-algebra X is called a QS-algebra ([1]) if it satisfies the following
identity:

(x ∗ y) ∗ (x ∗ z) = z ∗ y, for any x, y, z ∈ X.

Example 2.2([1]). Let Z be the set of all integers and let nZ :=
{nz|z ∈ Z}, where n ∈ Z. Then (Z;−, 0) and (nZ;−, 0) are both Q-
algebras and QS-algebras, where “−” is the usual subtraction of integers.
Also, (R;−, 0) and (C;−, 0) are Q-algebras and QS-algebras where R is
the set of all real numbers, C is the set of all complex numbers.
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Example 2.3. (1) Let X = {0, 1, 2} be a set with the table as
follows:

∗ 0 1 2
0 0 0 0
1 1 0 0
2 2 0 0

Then X is a Q-algebra, but not a QS/BCI-algebra, since (2∗0)∗(2∗1) =
2 6= 1 = 1 ∗ 0.
(2) Let X = {0, 1, 2} be a set with the table as follows:

∗ 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Then X is both a Q-algebra and QS-algebra.
(3) Let X = {0, 1, 2} be a set with the table as follows:

∗ 0 1 2
0 0 0 0
1 1 0 0
2 2 1 0

Then X is both a Q-algebra and BCI-algebra , but not a QS-algebra,
since (0 ∗ 1) ∗ (0 ∗ 2) = 0 6= 1 = 2 ∗ 1.

Lemma 2.4. Every Q-algebra X satisfies the following property:

0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y) for any x, y ∈ X.

Proof. For any x, y ∈ X, we have

0 ∗ (x ∗ y) =((0 ∗ y) ∗ (0 ∗ y)) ∗ (x ∗ y)

=((0 ∗ y) ∗ (x ∗ y)) ∗ (0 ∗ y)

=(((x ∗ y) ∗ x) ∗ (x ∗ y)) ∗ (0 ∗ y)

=(((x ∗ y) ∗ (x ∗ y)) ∗ x) ∗ (0 ∗ y)

=(0 ∗ x) ∗ (0 ∗ y).

This competes the proof.

3. T -parts and T -ideals

In the following, let X denote a Q-algebra unless otherwise specified.
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Definition 3.1. Let X be a Q-algebra. The set

T (X) := {y ∈ X|y = (0 ∗ x) ∗ x for some x ∈ X}
is called the T -part of X.

Clearly, 0 ∈ T (X).

Theorem 3.2. Let X be a Q-algebra. Then T (X) is a subalgebra
of X.

Proof. Let a, b ∈ T (X). Then a = (0 ∗ x) ∗ x and b = (0 ∗ y) ∗ y for
some x, y ∈ X. Thus

a ∗ b =((0 ∗ x) ∗ x) ∗ ((0 ∗ y) ∗ y)

=((0 ∗ ((0 ∗ y) ∗ y)) ∗ x) ∗ x)

=[((0 ∗ (0 ∗ y)) ∗ (0 ∗ y)) ∗ x] ∗ x

=[((0 ∗ x) ∗ (0 ∗ y)) ∗ (0 ∗ y)] ∗ x

=[((0 ∗ (x ∗ y)) ∗ (0 ∗ y)] ∗ x

=[(0 ∗ (0 ∗ y)) ∗ x] ∗ (x ∗ y)

=[(0 ∗ x) ∗ (0 ∗ y)] ∗ (x ∗ y)

=[0 ∗ (x ∗ y)] ∗ (x ∗ y).

Hence a ∗ b ∈ T (X), which completes the proof.

In general, the T -part of a Q-algebra X may not be an ideal of X as
shown in the following example.

Example 3.3. Let X = {0, 1, 2, 3, 4} be a set with the table as
follows:

∗ 0 1 2 3 4
0 0 0 3 2 3
1 1 0 3 2 3
2 2 2 0 3 0
3 3 3 2 0 2
4 4 2 1 3 0

Then (X; ∗, 0) is a Q-algebra. T (X) = {0, 2, 3} is not an ideal of X,
since 1 ∗ 2 = 3 ∈ T (X), but 1 /∈ T (X).

Definition 3.4. An element a is an atom of X if, for all x ∈ X,
x ∗ a = 0 implies x = a.

Obviously, 0 is an atom of X. The set of all atoms of X is denoted
by L(X).
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Theorem 3.5. Let X be a Q-algebra. Then for all x, y, z, u of X,
the following conditions are equivalent:

(i) x is an atom;
(ii) x = z ∗ (z ∗ x);
(iii) (z ∗ u) ∗ (z ∗ x) = x ∗ u;
(iv) x ∗ (z ∗ y) = y ∗ (z ∗ x);
(v) 0 ∗ (z ∗ x) = x ∗ z;
(vi) 0 ∗ (0 ∗ x) = x;
(vii) 0 ∗ (0 ∗ (x ∗ z)) = x ∗ z;
(viii) z ∗ (z ∗ (x ∗ u)) = x ∗ u.

Proof. (i)⇒(ii): Let x be an atom of X. Since z ∗ (z ∗ x) ≤ x, we
have x = z ∗ (z ∗ x) for any x, z ∈ X.
(ii)⇒(iii): Using (ii), we get (z ∗ u) ∗ (z ∗ x) = (z ∗ (z ∗ x)) ∗ u = x ∗ u for
any x, z, u ∈ X.
(iii)⇒(iv): Replacing u by z ∗ y in (iii), we obtain x ∗ (z ∗ y) = (z ∗ (z ∗
y)) ∗ (z ∗ x) = (z ∗ (z ∗ x)) ∗ (z ∗ y) = y ∗ (z ∗ x). Hence (iv) holds.
(iv)⇒(v): Put y := 0 in (iv). Then x ∗ (z ∗ 0) = 0 ∗ (z ∗ x). It follows
from z ∗ 0 = z that x ∗ z = 0 ∗ (z ∗ x).
(v)⇒(vi): Set z := 0 in (v). Then 0 ∗ (0 ∗ x) = x ∗ 0 = x. Thus we have
0 ∗ (0 ∗ x) = x.
(vi)⇒(vii): For any x, z ∈ X, we have

0 ∗ (0 ∗ (x ∗ z)) =0 ∗ ((0 ∗ x) ∗ (0 ∗ z))

=(0 ∗ (0 ∗ x)) ∗ (0 ∗ (0 ∗ z))
=x ∗ z.

Hence 0 ∗ (0 ∗ (x ∗ z)) = x ∗ z.
(vii)⇒(viii): For any x, z, u ∈ X, we get

x ∗ u =0 ∗ (0 ∗ (x ∗ u))

=0 ∗ ((z ∗ z) ∗ (x ∗ u))

=0 ∗ ((z ∗ (x ∗ u)) ∗ z)

=[0 ∗ (z ∗ (x ∗ u))] ∗ (0 ∗ z)

=(0 ∗ (0 ∗ z)) ∗ (z ∗ (x ∗ u))

=(0 ∗ (0 ∗ (z ∗ 0))) ∗ (z ∗ (x ∗ u))

=(z ∗ 0) ∗ (z ∗ (x ∗ u))

=z ∗ (z ∗ (x ∗ u)).

Thus (viii) holds.
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(viii)⇒(i): If z∗x = 0, then by (viii), we have x = x∗0 = z∗(z∗(x∗0)) =
z ∗ (z ∗ x) = z ∗ 0 = z. This shows that x is an atom. The proof is
complete.

Corollary 3.6. Let X be a Q-algebra. If a is an atom of X, then
for all x of X, a ∗ x is an atom. Hence L(X) is a subalgebra of X.
For every x of X, there is an atom a such that a ≤ x, i.e., every Q-algebra
is generated by atoms.

Proposition 3.7. Let X be a QS-algebra. Then T (X) is an ideal
of X.

Proof. Let x ∗ y, y ∈ T (X) for any x, y ∈ X. It follows from Theorem
3.5 that x = y∗(y∗x) = y∗(0∗(x∗y)). By Theorem 3.2, 0∗(x∗y) ∈ T (X).
Since y ∗x = 0∗ (x∗y), y ∈ T (X), by Theorem 3.2 we have x ∈ X. Thus
T (X) is an ideal of X.

Lemma 3.8. Let X be a Q-algebra. A non-zero element a ∈ X is
an atom of X if {0, a} is an ideal of X.

Proof. Assume that x ≤ a for any x ∈ X. Then x ∗ a = 0 ∈ {0, a}.
Since {0, a} is an ideal of X, we have x ∈ {0, a}. Hence x = 0 or x = a.
Thus a is an atom of X.

The converse of Lemma 3.8 is not true as seen in the following exam-
ple.

Example 3.9. Let X = {0, 1, 2} be a Q-algebra as in Example
2.3(2). Then an element 2 of X is an atom, but {0, 2} is not an ideal
since 1 ∗ 2 = 2 ∈ {0, 2}, but 1 /∈ {0, 2}.

Lemma 3.10. If every non-zero element of a Q-algebra X is an
atom, then any subalgebra of X is an ideal of X.

Proof. Let S be a subalgebra of X and let x, y ∗x ∈ S for any y ∈ X.
If follows from Theorem 3.5 that y = x ∗ (x ∗ y) = x ∗ (0 ∗ (y ∗ x)). Since
0, y ∗ x ∈ S and S is a subalgebra of X, we have 0 ∗ (y ∗ x) ∈ S. Hence
y = x ∗ (0 ∗ (y ∗x)) ∈ S. Thus any subalgebra of X is an ideal of X.

From the above Lemmas we obtain the following theorem.

Theorem 3.11. A Q-algebra contains only atoms if and only if every
its subalgebra is an ideal.

Proof. The necessity follows from Lemma 3.10. Conversely, assume
that every its subalgebra is an ideal. Let S := {0, a} be a subalgebra of
X for any 0 6= a ∈ X. By assumption, S is an ideal of X. It follows
from Lemma 3.8 that a is an atom of X.
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For any atom a of X, the set V (a) := {x ∈ X|a ≤ x} is called a
branch of X.

Theorem 3.12. Let X be a Q-algebra and suppose a and b are
atoms of X. Then the following properties hold:
(i) For all x ∈ V (a) and all y ∈ V (b), x ∗ y ∈ V (a ∗ b),
(ii) For all x and y ∈ V (a), x∗y ∈ B(X), where B(X) := {x ∈ X|0 ≤ x},
(iii) If a 6= b, then for all x ∈ V (a) and y ∈ V (b), we have x ∗ y /∈ B(X),
(iv) For all x ∈ V (b), a ∗ x = a ∗ b,
(v) If a 6= b, then V (a) ∩ V (b) = ∅.

Proof. (i) For all x ∈ V (a) and all y ∈ V (b), by Theorem 3.5 we have

(a ∗ b) ∗ (x ∗ y) =(0 ∗ (0 ∗ (a ∗ b))) ∗ (x ∗ y)

=(0 ∗ (x ∗ y)) ∗ (0 ∗ (a ∗ b))

=[(0 ∗ x) ∗ (0 ∗ y)] ∗ (0 ∗ (a ∗ b))

=[(0 ∗ (0 ∗ (a ∗ b))) ∗ x] ∗ (0 ∗ y)

=[(a ∗ b) ∗ x] ∗ (0 ∗ y)

=[(a ∗ x) ∗ b] ∗ (0 ∗ y)

=(0 ∗ b) ∗ (0 ∗ y)

=0 ∗ (b ∗ y) = 0 ∗ 0 = 0.

Hence x ∗ y ∈ V (a ∗ b). Thus (i) holds.
(ii) and (iii) are simple consequences of (i).
(iv) For all x ∈ V (b), by Theorem 3.5 we have (a ∗ x) ∗ (a ∗ b) = (a ∗
(a ∗ b)) ∗ x = b ∗ x = 0. Moreover, a ∗ b is an atom by Corollary 3.6.
Therefore a ∗ x = a ∗ b. Therefore (iv) holds.
(v) Let a 6= b and V (a)∩V (b) 6= ∅. Then there exists c ∈ V (a)∩V (b). By
(i), we have 0 = c∗c ∈ V (a∗b) and so a∗b = 0, which is a contradiction.
Thus (v) is true.

Definition 3.13. A non-empty subset A of a Q-algebra X is called
a T -ideal of X if it satisfies

(i) 0 ∈ A,
(ii) x ∗ (y ∗ z) ∈ A and y ∈ A imply x ∗ z ∈ A for all x, y, z ∈ X.

Every T -ideal of a Q-algebra is an ideal, but not converse. In fact,
consider the Q-algebra X := {0, 1, 2, 3, 4} as in Example 3.3. The set
A := {0, 1} is an ideal of X but not a T -ideal of X, since 4 ∗ (0 ∗ 3) =
1 ∈ A, but 4 ∗ 3 = 3 /∈ A.



522 Sun Shin Ahn and Seung Eel Kang

Example 3.14. Let X := {0, 1, 2, 3} be a set with the following
table:

∗ 0 1 2 3
0 0 0 0 3
1 1 0 1 3
2 2 2 0 3
3 3 3 3 0

It is easily checked that (X; ∗, 0) is a Q-algebra. Then {0, 1, 2} is a
T -ideal of X.

Lemma 3.15. Let A be a T -ideal of a Q-algebra X. Then (0∗x)∗x ∈
A for all x ∈ A.

Proof. Straightforward.

Theorem 3.16. Let A be an ideal of a QS-algebra X. Then A is a
T -ideal of X if and only if T (X) ⊆ A.

Proof. Necessity follows from Lemma 3.15. Conversely, suppose that
T (X) ⊆ A. Let x ∗ (y ∗ z) ∈ A and y ∈ A for all x, y, z ∈ X. Since X is
a QS-algebra, we have

[(x ∗ z) ∗ (x ∗ (y ∗ z))] ∗ y =((y ∗ z) ∗ z) ∗ y

=((y ∗ z) ∗ y) ∗ z

=((y ∗ y) ∗ z) ∗ z

=(0 ∗ z) ∗ z ∈ T (X) ⊆ A.

Hence x ∗ z ∈ A, since A is an ideal of a QS-algebra X. Thus A is a
T -ideal of X, completing the proof.

Corollary 3.17. Let A and B be ideals of a QS-algebra. If A ⊆ B
and A is a T -ideal of X, then B is also a T -ideal of X.

Proof. Straightforward.
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