Honam Mathematical J. 32 (2010), No. 3, pp. 515-523

THE ROLE OF T(X) IN THE IDEAL THEORY OF *Q*-ALGEBRAS

SUN SHIN AHN AND SEUNG EEL KANG

Abstract. In this paper, we introduced a special set, called T-part, in a Q-algebra X. We also show that the T-part of X is a subalgebra of X. By using T-part, we provide an equivalent condition that every ideal is a T-ideal.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([4,5]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [2,3] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCHalgebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim ([8]) introduced the notion of d-algebras, i.e., (I) x * x = 0; (VII) 0 * x = 0; (VI) x * y = 0 and y * x = 0 imply x = y, which is another useful generalization of BCK-algebras, and investigated several relations between d-algebras and BCK-algebras, and then investigated other relations between dalgebras and oriented digraphs. On the while, Y. B. Jun, E. H. Roh and H. S. Kim ([6]) introduced a new notion, called a BH-algebra, i.e., (I) x * x = 0; (II) x * 0 = x; (VI) x * y = 0 and y * x = 0 imply x = y, which is a generalization of BCH/BCI/BCK-algebras, and showed that there is a maximal ideal in bounded BH-algebras. J. Neggers, S. S. Ahn and H. S. Kim ([7]) introduced a new notion, called an Q-algebra, which is a generalization of BCH/BCI/BCK-algebras, and generalized some theorems discussed in *BCI*-algebras.

In this paper, we introduced a special set, called T-part, in a Q-algebra X. We also show that the T-part of X is a subalgebra of X.

Received June 14, 2010. Accepted July 14, 2010.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. atom, T-part, T-ideal, QS-algebra, Q-algebra.

By using T-part, we provide an equivalent condition that every ideal is a T-ideal.

2. Preliminaries

A *Q*-algebra ([7]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying axioms:

- $(\mathbf{I}) \qquad x * x = 0,$
- (II) x * 0 = x,
- (III) (x * y) * z = (x * z) * y
- for all $x, y, z \in X$.

For brevity we also call X a *Q*-algebra. In X we can define a binary relation " \leq " by $x \leq y$ if and only if x * y = 0.

In a Q-algebra X the following property holds:

(IV) (x * (x * y)) * y = 0, for any $x, y \in X$.

A BCK-algebra is a Q-algebra X satisfying the additional axioms:

- (V) ((x * y) * (x * z)) * (z * y) = 0,
- (VI) x * y = 0 and y * x = 0 imply x = y,
- $(\text{VII}) \qquad 0 * x = 0,$

for all $x, y, z \in X$.

Definition 2.1([7]). Let (X; *, 0) be a *Q*-algebra and $\emptyset \neq I \subset X$. *I* is called a *subalgebra* of *X* if

(S) $x * y \in I$ whenever $x \in I$ and $y \in I$.

I is called an *ideal* of X if it satisfies:

- $(Q_0) \qquad 0 \in I,$
- (Q_1) $x * y \in I$ and $y \in I$ imply $x \in I$.

A Q-algebra X is called a QS-algebra ([1]) if it satisfies the following identity:

$$(x * y) * (x * z) = z * y,$$
 for any $x, y, z \in X.$

Example 2.2([1]). Let \mathbb{Z} be the set of all integers and let $n\mathbb{Z} := \{nz | z \in \mathbb{Z}\}$, where $n \in \mathbb{Z}$. Then $(\mathbb{Z}; -, 0)$ and $(n\mathbb{Z}; -, 0)$ are both Q-algebras and QS-algebras, where "-" is the usual subtraction of integers. Also, $(\mathbb{R}; -, 0)$ and $(\mathbb{C}; -, 0)$ are Q-algebras and QS-algebras where \mathbb{R} is the set of all real numbers, \mathbb{C} is the set of all complex numbers.

Example 2.3. (1) Let $X = \{0, 1, 2\}$ be a set with the table as follows:

Then X is a Q-algebra, but not a QS/BCI-algebra, since $(2*0)*(2*1) = 2 \neq 1 = 1*0$.

(2) Let $X = \{0, 1, 2\}$ be a set with the table as follows:

Then X is both a Q-algebra and QS-algebra. (3) Let $X = \{0, 1, 2\}$ be a set with the table as follows:

Then X is both a Q-algebra and BCI-algebra , but not a QS-algebra, since $(0*1)*(0*2)=0\neq 1=2*1.$

Lemma 2.4. Every *Q*-algebra *X* satisfies the following property: 0 * (x * y) = (0 * x) * (0 * y) for any $x, y \in X$.

Proof. For any $x, y \in X$, we have

$$0 * (x * y) = ((0 * y) * (0 * y)) * (x * y)$$

=((0 * y) * (x * y)) * (0 * y)
=(((x * y) * x) * (x * y)) * (0 * y)
=(((x * y) * (x * y)) * x) * (0 * y)
=(0 * x) * (0 * y).

This competes the proof.

3. *T*-parts and *T*-ideals

In the following, let X denote a Q-algebra unless otherwise specified.

Definition 3.1. Let X be a Q-algebra. The set

$$T(X) := \{ y \in X | y = (0 * x) * x \text{ for some } x \in X \}$$

is called the T-part of X.

Clearly, $0 \in T(X)$.

Theorem 3.2. Let X be a Q-algebra. Then T(X) is a subalgebra of X.

Proof. Let $a, b \in T(X)$. Then a = (0 * x) * x and b = (0 * y) * y for some $x, y \in X$. Thus

$$\begin{aligned} a*b =& ((0*x)*x)*((0*y)*y) \\ =& ((0*((0*y)*y))*x)*x) \\ =& [((0*(0*y))*(0*y))*x]*x \\ =& [((0*x)*(0*y))*(0*y)]*x \\ =& [((0*(x*y))*(0*y)]*x \\ =& [((0*(x*y))*(0*y)]*x \\ =& [(0*(0*y))*x]*(x*y) \\ =& [(0*x)*(0*y)]*(x*y) \\ =& [0*(x*y)]*(x*y). \end{aligned}$$

Hence $a * b \in T(X)$, which completes the proof.

In general, the T-part of a Q-algebra X may not be an ideal of X as shown in the following example.

Example 3.3. Let $X = \{0, 1, 2, 3, 4\}$ be a set with the table as follows:

*	0	1	2	3	4
0	0	0	3	2	3
1	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	0	3	2	3
2	2	2	0	3	0
3	3	3	2	0	2
4	4	2	1	3	0

Then (X; *, 0) is a Q-algebra. $T(X) = \{0, 2, 3\}$ is not an ideal of X, since $1 * 2 = 3 \in T(X)$, but $1 \notin T(X)$.

Definition 3.4. An element a is an *atom* of X if, for all $x \in X$, x * a = 0 implies x = a.

Obviously, 0 is an atom of X. The set of all atoms of X is denoted by L(X).

Theorem 3.5. Let X be a Q-algebra. Then for all x, y, z, u of X, the following conditions are equivalent:

(i) x is an atom; (ii) x = z * (z * x);(iii) (z * u) * (z * x) = x * u;(iv) x * (z * y) = y * (z * x);(v) 0 * (z * x) = x * z;(vi) 0 * (0 * x) = x;(vii) 0 * (0 * (x * z)) = x * z;(viii) z * (z * (x * u)) = x * u.

Proof. (i) \Rightarrow (ii): Let x be an atom of X. Since $z * (z * x) \leq x$, we have x = z * (z * x) for any $x, z \in X$. (ii) \Rightarrow (iii): Using (ii), we get (z * u) * (z * x) = (z * (z * x)) * u = x * u for any $x, z, u \in X$. (iii) \Rightarrow (iv): Replacing u by z * y in (iii), we obtain x * (z * y) = (z * (z * y)) * (z * x) = (z * (z * x)) * (z * y) = y * (z * x). Hence (iv) holds. (iv) \Rightarrow (v): Put y := 0 in (iv). Then x * (z * 0) = 0 * (z * x). It follows from z * 0 = z that x * z = 0 * (z * x).

(v) \Rightarrow (vi): Set z := 0 in (v). Then 0 * (0 * x) = x * 0 = x. Thus we have 0 * (0 * x) = x.

(vi) \Rightarrow (vii): For any $x, z \in X$, we have

$$0 * (0 * (x * z)) = 0 * ((0 * x) * (0 * z))$$

= (0 * (0 * x)) * (0 * (0 * z))
= x * z.

Hence 0 * (0 * (x * z)) = x * z. (vii) \Rightarrow (viii): For any $x, z, u \in X$, we get x * u = 0 * (0 * (x * u))

$$=0 * ((z * z) * (x * u))$$

=0 * ((z * (x * u)) * z)
=[0 * (z * (x * u))] * (0 * z)
=(0 * (0 * z)) * (z * (x * u))
=(0 * (0 * (z * 0))) * (z * (x * u))
=(z * 0) * (z * (x * u))
=z * (z * (x * u)).

Thus (viii) holds.

 $(\text{viii}) \Rightarrow (i)$: If z * x = 0, then by (viii), we have x = x * 0 = z * (z * (x * 0)) = z * (z * x) = z * 0 = z. This shows that x is an atom. The proof is complete.

Corollary 3.6. Let X be a Q-algebra. If a is an atom of X, then for all x of X, a * x is an atom. Hence L(X) is a subalgebra of X. For every x of X, there is an atom a such that $a \le x$, i.e., every Q-algebra is generated by atoms.

Proposition 3.7. Let X be a QS-algebra. Then T(X) is an ideal of X.

Proof. Let $x * y, y \in T(X)$ for any $x, y \in X$. It follows from Theorem 3.5 that x = y*(y*x) = y*(0*(x*y)). By Theorem 3.2, $0*(x*y) \in T(X)$. Since $y * x = 0*(x*y), y \in T(X)$, by Theorem 3.2 we have $x \in X$. Thus T(X) is an ideal of X.

Lemma 3.8. Let X be a Q-algebra. A non-zero element $a \in X$ is an atom of X if $\{0, a\}$ is an ideal of X.

Proof. Assume that $x \leq a$ for any $x \in X$. Then $x * a = 0 \in \{0, a\}$. Since $\{0, a\}$ is an ideal of X, we have $x \in \{0, a\}$. Hence x = 0 or x = a. Thus a is an atom of X.

The converse of Lemma 3.8 is not true as seen in the following example.

Example 3.9. Let $X = \{0, 1, 2\}$ be a *Q*-algebra as in Example 2.3(2). Then an element 2 of X is an atom, but $\{0, 2\}$ is not an ideal since $1 * 2 = 2 \in \{0, 2\}$, but $1 \notin \{0, 2\}$.

Lemma 3.10. If every non-zero element of a Q-algebra X is an atom, then any subalgebra of X is an ideal of X.

Proof. Let S be a subalgebra of X and let $x, y * x \in S$ for any $y \in X$. If follows from Theorem 3.5 that y = x * (x * y) = x * (0 * (y * x)). Since $0, y * x \in S$ and S is a subalgebra of X, we have $0 * (y * x) \in S$. Hence $y = x * (0 * (y * x)) \in S$. Thus any subalgebra of X is an ideal of X. \Box

From the above Lemmas we obtain the following theorem.

Theorem 3.11. A *Q*-algebra contains only atoms if and only if every its subalgebra is an ideal.

Proof. The necessity follows from Lemma 3.10. Conversely, assume that every its subalgebra is an ideal. Let $S := \{0, a\}$ be a subalgebra of X for any $0 \neq a \in X$. By assumption, S is an ideal of X. It follows from Lemma 3.8 that a is an atom of X.

For any atom a of X, the set $V(a) := \{x \in X | a \leq x\}$ is called a *branch* of X.

Theorem 3.12. Let X be a Q-algebra and suppose a and b are atoms of X. Then the following properties hold: (i) For all $x \in V(a)$ and all $y \in V(b), x * y \in V(a * b)$, (ii) For all x and $y \in V(a), x * y \in B(X)$, where $B(X) := \{x \in X | 0 \le x\}$, (iii) If $a \ne b$, then for all $x \in V(a)$ and $y \in V(b)$, we have $x * y \notin B(X)$, (iv) For all $x \in V(b), a * x = a * b$, (iv) If $a \ne b$, then $V(a) \cap V(b) = \emptyset$

(v) If $a \neq b$, then $V(a) \cap V(b) = \emptyset$.

Proof. (i) For all $x \in V(a)$ and all $y \in V(b)$, by Theorem 3.5 we have

$$\begin{aligned} (a*b)*(x*y) =& (0*(0*(a*b)))*(x*y) \\ =& (0*(x*y))*(0*(a*b)) \\ =& [(0*x)*(0*y)]*(0*(a*b)) \\ =& [(0*(0*(a*b)))*x]*(0*y) \\ =& [(a*b)*x]*(0*y) \\ =& [(a*x)*b]*(0*y) \\ =& [(a*x)*b]*(0*y) \\ =& (0*b)*(0*y) \\ =& 0*(b*y) = 0*0 = 0. \end{aligned}$$

Hence $x * y \in V(a * b)$. Thus (i) holds.

(ii) and (iii) are simple consequences of (i).

(iv) For all $x \in V(b)$, by Theorem 3.5 we have (a * x) * (a * b) = (a * (a * b)) * x = b * x = 0. Moreover, a * b is an atom by Corollary 3.6. Therefore a * x = a * b. Therefore (iv) holds.

(v) Let $a \neq b$ and $V(a) \cap V(b) \neq \emptyset$. Then there exists $c \in V(a) \cap V(b)$. By (i), we have $0 = c * c \in V(a * b)$ and so a * b = 0, which is a contradiction. Thus (v) is true.

Definition 3.13. A non-empty subset A of a Q-algebra X is called a T-*ideal* of X if it satisfies

(i)
$$0 \in A$$
,

(ii) $x * (y * z) \in A$ and $y \in A$ imply $x * z \in A$ for all $x, y, z \in X$.

Every *T*-ideal of a *Q*-algebra is an ideal, but not converse. In fact, consider the *Q*-algebra $X := \{0, 1, 2, 3, 4\}$ as in Example 3.3. The set $A := \{0, 1\}$ is an ideal of X but not a *T*-ideal of X, since $4 * (0 * 3) = 1 \in A$, but $4 * 3 = 3 \notin A$.

Example 3.14. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

>	k	0	1	2	3
()	0	0	0	3
]	L	1	0	1	3
4	L 2 3	2	$ \begin{array}{c} 0 \\ 0 \\ 2 \\ 3 \end{array} $	0	3
į	3	$\begin{array}{c} 0\\ 1\\ 2\\ 3\end{array}$	3	3	0

It is easily checked that (X; *, 0) is a Q-algebra. Then $\{0, 1, 2\}$ is a T-ideal of X.

Lemma 3.15. Let A be a T-ideal of a Q-algebra X. Then $(0*x)*x \in A$ for all $x \in A$.

Proof. Straightforward.

Theorem 3.16. Let A be an ideal of a QS-algebra X. Then A is a T-ideal of X if and only if $T(X) \subseteq A$.

Proof. Necessity follows from Lemma 3.15. Conversely, suppose that $T(X) \subseteq A$. Let $x * (y * z) \in A$ and $y \in A$ for all $x, y, z \in X$. Since X is a QS-algebra, we have

$$[(x * z) * (x * (y * z))] * y = ((y * z) * z) * y$$

= ((y * z) * y) * z
= ((y * y) * z) * z
= (0 * z) * z \in T(X) \subseteq A.

Hence $x * z \in A$, since A is an ideal of a QS-algebra X. Thus A is a T-ideal of X, completing the proof.

Corollary 3.17. Let A and B be ideals of a QS-algebra. If $A \subseteq B$ and A is a T-ideal of X, then B is also a T-ideal of X.

Proof. Straightforward.

References

- S. S. Ahn and H. S. Kim, On QS-algebras, J. Chungcheong Math. Soc., 12(1999), 33-41.
- [2] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes, 11(1983), 313-320.
- [3] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japon., **30**(1985), 659-661.
- [4] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon., 23(1978), 1-26.
- [5] K. Iséki, On BCI-algebras, Mathe. Seminar Notes, 8(1980), 125-130.

- [6] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Mathematica , 1, (1998), 347-354.
- [7] J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, Inter. J. Math. Math. Sci., 27(2001), 749-757.
- [8] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca, 49 (1999), 19-26.

Sun Shin Ahn Department of Mathematics Education Dongguk University Seoul 100-715, Korea *E-mail address*: sunshine@dongguk.edu

Seung Eel Kang Department of Mathematics Education Dongguk University Seoul 100-715, Korea *E-mail address*: seungeel@naver.com