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A GENERALIZATION OF THE ADAMS-BASHFORTH
METHOD

Nahmwoo Hahm and Bum Il Hong†

Abstract. In this paper, we investigate a generalization of the
Adams-Bashforth method by using the Taylor’s series. In case
of m-step method, the local truncation error can be expressed in
terms of m − 1 coefficients. With an appropriate choice of coeffi-
cients, the proposed method has produced much smaller error than
the original Adams-Bashforth method. As an application of the
generalized Adams-Bashforth method, the accuracy performance is
demonstrated in the satellite orbit prediction problem. This implies
that the generalized Adams-Bashforth method is applied to the or-
bit prediction of a low-altitude satellite. This numerical example
shows that the prediction of the satellite trajectories is improved
one order of magnitude.

1. Introduction

A multistep integration method is preferable to a single step method
since the multistep integrator requires relatively small number of func-
tion evaluations. The Adams-Bashforth method is strongly stable in
terms of round-off errors so that it produces relatively accurate approx-
imation solutions. Therefore, the strong stability is the main reason for
choosing the Adams-Bashforth method in many packages [1].

In this paper, the general multistep method associated with error con-
trol parameters will be formulated. Then, the Adams-Bashforth method
becomes a special case of the general method. Although there may exist
infinitely many strong stable multistep methods, only the method that
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can produce smaller local truncation error than the original Adams-
Bashforth method will be considered.

For the comparison purposes, the two body problem of the Earth’s
satellite is integrated numerically. The two body problem is considered
since it has an exact solution that can be used in the error quantifica-
tion. The satellite for the numerical integration is a Geoscience Laser
Altimeter System type low-altitude satellite [4].

2. Generalized Adams-Bashforth Method

This paper is concerned with approximating the solution y(t) to the
general first-order initial-value problem of the form

(2.1) y′ = f(t, y); t0 ≤ t ≤ tN , y(t0) = y0.

Suppose that the mesh points {t0, t1, . . . , tN} are selected with the uni-
form step size h, where

(2.2) ti = t0 + ih for i = 0, 1, . . . , N

and the approximation yi ≈ y(ti) is specified for each i = 0, 1, . . . ,m−1.

The m-step Generalized Adams-Bashforth (GAB) method for solving
the problem is represented by the difference equation

(2.3) yi+1 =
m−1∑

k=0

akyi−k + h

m−1∑

k=0

bkf(ti−k, yi−k)

for i = m−1,m, . . . , N−1, where {a0, a1, . . . , am−1} and {b0, b1, . . . , bm−1}
are constants to be determined. In practice, each ak should be con-
strained to provide the method with the roundoff stability. To be a
strongly stable method, the roots of the characteristic equation

(2.4) λm − a0λ
m−1 − a1λ

m−2 − · · · − am−1 = 0

must satisfy the following root conditions:
Criterion 1 λ = 1 is a simple root and is the only root of magnitude
one.
Criterion 2 All roots except λ = 1 have absolute value less than 1.

In this section, it will be shown that each bk can be expressed as a
linear combination of {a1, . . . , am−1}. So it is sufficient to determine
{a1, . . . , am−1} only, since a0 can be obtained by applying Criterion 1 to
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(2.4). It is known that

1 =
m−1∑

k=0

ak(2.5)

or explicitly,

a0 = 1−
m−1∑

k=1

ak.(2.6)

The Taylor’s series will be useful to derive the GAB method. The
Taylor’s series for yi+1 is given by

(2.7) yi+1 = yi +
∞∑

j=1

Di,jh
j

where Di,j is the j-th derivative of y at ti divided by j!; that is,

(2.8) Di,j =
1
j!

djy

dtj
(ti) .

Since ti−k = ti − kh, the Taylor’s series for yi−k becomes

(2.9) yi−k = yi +
∞∑

j=1

(−k)jDi,jh
j .

By regarding f as a function of t, the relationship f = y′ results in the
Taylor’s series of the following form

(2.10) f(ti−k, yi−k) =
∞∑

j=1

j(−k)j−1Di,jh
j−1.

Substituting (2.7), (2.9) and (2.10) into (2.3) and equating coefficients
of like powers of h yield the system of equations,

(2.11) 1 =
m−1∑

k=0

(jbk − kak)(−k)j−1 for j = 1, 2, . . . , m.

The local truncation error τi+1(h) at this step is

τi+1(h) =
(
yi+1 −

m−1∑

k=0

akyi−k

)
/h−

m−1∑

k=0

bkf(ti−k, yi−k)

=

{
1−

m−1∑

k=0

[
(m + 1)bk − kak

]
(−k)m

}
Di,m+1h

m.

(2.12)
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Note that the original Adams-Bashforth (AB) method is obtained by
taking a1 = · · · = am−1 = 0. Consider the equation when j = 1 in
(2.11). It is given by

(2.13) 1 =
m−1∑

k=0

(bk − kak)

which implies that the sum of all bk equals 1 in the AB method. Hence,

(2.14) AB method: 1 =
m−1∑

k=0

bk.

To derive the GAB method, it is convenient to use vectors and ma-
trices. Let ã, b and 1 be m-dimensional column vectors:

(2.15) ã =




1
a1
...

am−1


 , b =




b0

b1
...

bm−1


 and 1 =




1
1
...
1


 .

Also, let A and B be m×m matrices defined by
(2.16)

A =

(k+1)-th


...
· · · −(−k)j · · ·

...


j-th and B =

(k+1)-th


...
· · · j(−k)j−1 · · ·

...


j-th

for j = 1, 2, . . . ,m and k = 0, 1, . . . ,m− 1.
In fact, a0 disappears in (2.11) because its coefficient is actually zero.

Thus the system of equations in (2.11) can be written in a vector-matrix
form,

(2.17) 1 = Bb−Aã.

Since the first column of A is a zero vector, it will be replaced by 1
to obtain a new matrix Ã. The following expression illustrates how to
construct Ã explicitly:

(2.18) Ã =
[
1
∣∣∣Aj,k+1

]
for j = 1, 2, . . . , m; k = 1, . . . , m− 1.

Here, the vertical line is used to separate the column replacement from
the other original columns of A. It is preferable to use Ã rather than
A, since

(2.19) Ãã = 1 + Aã.
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Consequently, b can be expressed in a simple form when (2.19) is applied
to (2.17); that is,

b = C̃ã(2.20)

where C̃ is a coefficient matrix computed by

C̃ = B−1Ã.(2.21)

Numerical values of C̃ are provided in Appendix A. Equation (2.20)
implies that bk for each k = 0, 1, . . . ,m − 1 is a linear combination of
{a1, . . . , am−1}.

Let b0 and C be a column vector and a matrix, respectively;

b0 = B−11,

C = B−1A.
(2.22)

Analogous to Ã, the values of C̃ agree with those in C except in the
first column. The first column of C̃ is b0 so that C̃ can be constructed
as

(2.23) C̃ =
[
b0

∣∣∣Cj,k+1

]
for j = 1, 2, . . . , m; k = 1, . . . , m− 1.

Now, it is clear that b can be expressed in an additional form

(2.24) b = b0 + Cã

and it is obvious that b = b0 in the AB method; namely,

(2.25) AB method: ãT =
[
1 0 · · · 0

]
and b = b0.

As shown in (2.14), 1Tb0 = 1. It is interesting to compare (2.13) to
(2.24). In doing so, one can show that

(2.26) 1TC =
[
0 1 · · · m− 1

]
.

3. Error Analysis

The main purpose of this paper is to find numerical values of ã such
that the local truncation error τi+1(h) in (2.12) becomes smaller than
that of the AB method. For convenience, define δ as the coefficient of
τi+1(h):

τi+1(h) = δDi,m+1h
m,

δ = 1−
m−1∑

k=0

[
(m + 1)bk − kak

]
(−k)m.

(3.1)
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Let c and d be m-dimensional column vectors defined by

(3.2) c =




...
−(−k)m+1

...


(k + 1)-th and d =




...
−(m + 1)(−k)m

...


(k + 1)-th

for k = 0, 1, . . . , m − 1. Then, δ in (3.1) can be represented by these
vectors,

(3.3) δ = 1 + dTb + cT ã.

In fact, δ can be written in many ways by applying (2.20) or (2.24) to
(3.3).

δ = 1 + (dT C̃ + cT )ã

= 1 + dTb0 + (dTC + cT )ã.
(3.4)

To get more simple form of δ, define a coefficient δ0 and a column vector
e as follows.

δ0 = 1 + dTb0,

eT = dTC + cT .
(3.5)

Obviously, (3.4) is equivalent to

(3.6) δ = δ0 + eT ã.

The first entry of e is zero, so it is replaced by δ0 to get a new column
vector ẽ which is given by

(3.7) ẽT =
[
δ0

∣∣∣ eT
k+1

]
for k = 1, 2, . . . , m− 1.

Then, δ can be written in a compact form

(3.8) δ = ẽT ã.

Numerical values of ẽ are provided in Appendix A.
In the AB method, it is evident that eT ã = 0. Therefore the local

truncation error is as follows,

(3.9) AB method: δ = δ0 and τi+1(h) = δ0Di,m+1h
m.
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4. Numerical Example

The satellite motion of the two body model is selected for a numerical
example. This problem has an exact solution that can be used for the
accuracy assessment of the GAB method. The equation of a satellite
orbit prediction problem is given by

(4.1)
[
ṙ
v̇

]
=

[
v

−(µ/r3)r

]

where r and v are position and velocity vectors, respectively; µ is a
gravitational constant and r is the magnitude of r.

The satellite in this investigation has a low altitude about 800 km.
The initial condition of the orbit in SI unit is

(4.2) r0 =




7082414.740
3.957
−56.618


 and v0 =




−9.567
−1039.545
7485.424


 .

For a practical reason, low-step methods are not popular in the orbit
prediction problem. Thus, the 7-step method is applied to this example.

As shown in (A.6), all entries of ẽ are non-positive except for the first
element. Therefore, the error of the GAB method should be less than
or equal to the error of the AB method in each case of
(4.3)

ã1 =




1
a1

0
0
0
0
0




, ã2 =




1
0
a2

0
0
0
0




, ã3 =




1
0
0
a3

0
0
0




, ã4 =




1
0
0
0
a4

0
0




, ã5 =




1
0
0
0
0
a5

0




, ã6 =




1
0
0
0
0
0
a6




for ak ≥ 0; k = 1, 2, . . . , 6. Figure 1 shows the results of these when
the ak is increased by 0.1 from 0 to 1. The error is represented by
the positional root mean squares (rms). As the ak approaches to 1, it
becomes unstable because of the Criterion 2. Since the unstable method
is not necessary, unstable cases are omitted in the figure.

Note that the last entry of ẽ in (A.6) is zero. Theoretically, it implies
that ã6 has no effect on the GAB method. However, Figure 1 illustrates
that this is not true in reality. In fact, ã6 reduces the error significantly.
Since the error has been accumulated by its nature, this contradictable
behavior can be explained in a way that the approximate solution yi−6
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Figure 1. GAB method for Satellite Orbit Prediction Problem

contains less error than yi−5, yi−4, . . . , yi. For the same reason, it is
shown that ã5 reduces the error much than ã1.

Among all cases of (4.3), the minimum error occurs when a6 = 0.6 in
ã6. Thus, the following two cases are tried to find the better method:
ãT

4,6 =
[
1 0 0 0 a4 0 0.6

]
and ãT

5,6 =
[
1 0 0 0 0 a5 0.6

]
.

Unexpectedly, ã4,6 is very unstable whereas ã5,6 provides the mini-
mum error, even compared to (4.3). The method for ã5,6 is shown as
the lowest curve in the figure. Consequently, the best empirical values
for ã is

Best 7-step GAB method (empirical): ãT =
[
1 0 0 0 0 0.4 0.6

]
.

5. Conclusions

A general form of the multistep Adams-Bashforth method is de-
rived by utilizing the Taylor’s series. The coefficient matrix and the
error vector of the generalized Adams-Bashforth method are formulated.
Strongly stable multistep methods can be obtained by choosing appro-
priate values of parameters associated with the local truncation error.
The formula for the local truncation error gives an idea how to choose
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such values, however, it might not meet with good results because of
the accumulative error. It is known that those parameters should be
non-negative. Only the method that can produce smaller error than the
original Adams-Bashforth method is provided in the figure.

The two body problem of the Earth’s satellite is integrated as a nu-
merical example. A low-altitude satellite is taken for the numerical inte-
gration. The generalized 7-step method is applied to this satellite orbit
prediction problem. Many cases are found to be better than the original
Adams-Bashforth method. The best empirical method is obtained by
selecting the parameter as [ 1 0 0 0 0 0.4 0.6 ] . This method shows that the
prediction of the satellite trajectories is improved one order of magnitude
in rms.
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Appendix A. Coefficient Matrix C̃ and Error Vector ẽ

The coefficient matrix C̃ and the error vector ẽ of the GAB method
will be provided in this section. As explained in Sections 2 and 3, the
first column of C̃ and the first element of ẽ represent the AB method.
It is interesting to note that all values of ẽ, except the first entry, are
non-positive for each step method. This fact implies that the GAB
method has a smaller error than the AB method when the values of
{a1, . . . , am−1} are positive.

2-step method:

(A.1) C̃ =
1
2

[
3 1
−1 1

]
and ẽT /3! =

1
12

[
5 −1

]
.

3-step method:

(A.2) C̃ =
1
12




23 5 4
−16 8 16
5 −1 4


 and ẽT /4! =

1
24

[
9 −1 0

]
.
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4-step method:

C̃ =
1
24




55 9 8 9
−59 19 32 27
37 −5 8 27
−9 1 0 9


 ,

and ẽT /5! =
1

720
[
251 −19 −8 −27

]
.

(A.3)

5-step method:

C̃ =
1

720




1901 251 232 243 224
−2774 646 992 918 1024
2616 −264 192 648 384
−1274 106 32 378 1024
251 −19 −8 −27 224




,

and ẽT /6! =
1

1440
[
475 −27 −16 −27 0

]
.

(A.4)

6-step method:

C̃ =
1

1440




4277 475 448 459 448 475
−7923 1427 2064 1971 2048 1875
9982 −798 224 1026 768 1250
−7298 482 224 1026 2048 1250
2877 −173 −96 −189 448 1875
−475 27 16 27 0 475




,

ẽT /7! =
1

60480
[
19087 −863 −592 −783 −512 −1375

]
.

(A.5)
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7-step method:

C̃ =
1

60480


198721 19087 18224 18495 18304 18575 17712
−447288 65112 90240 87480 89088 87000 93312
705549 −46461 528 31347 24576 31875 11664
−688256 37504 21248 58752 96256 80000 117504
407139 −20211 −12912 −19683 11136 58125 11664
−134472 6312 4224 5832 3072 28200 93312
19087 −863 −592 −783 −512 −1375 17712




,

ẽT /8! =
1

120960
[
36799 −1375 −1024 −1215 −1024 −1375 0

]
.

(A.6)
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