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PROPERTIES OF A GENERALIZED UNIVERSAL
COVERING SPACE OVER A DIGITAL WEDGE

Sang-Eon Han

Abstract. The paper studies an existence problem of a (general-
ized) universal covering space over a digital wedge with a compatible
adjacency. In algebraic topology it is well-known that a connected,
locally path connected, semilocally simply connected space has a
universal covering space. Unlike this property, in digital covering
theory we need to investigate its digital version which remains open.

1. Introduction

Useful tools from algebraic topology for studying digital topological
properties of a (binary) digital space include a digital covering space.
This has been studied in many papers including [2, 4, 5, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18]. Motivated by the study of a covering space
over a figure eight in algebraic topology [28], the recent papers [6] (see
also [3, 11, 16, 17, 18, 19]) studied its digital version, which plays an
important role in classifying digital spaces. In algebraic topology, it is
also well known that a universal covering space over the figure eight is
an infinite tree with a fractal structure. But such a kind of approach
cannot be available in digital covering theory. Indeed, we can find some
intrinsic features of an infinite fold covering space over a digital wedge
consisting of two simple closed k-curves. By using intrinsic features of
a digital covering of a digital wedge, the papers [16, 18, 19] study the
generalized universal property which is the digital version of a universal
covering space in algebraic topology. As shown in [16, 18, 19], compared
with the algebraic topological version, the generalized universal property
in digital covering theory has own properties.
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In the study of a digital wedge consisting of two simple closed k-
curves, since we have mainly studied digital wedges consisting of two
simple closed k-curves in Z2, k ∈ {4, 8}, the other cases remain unsolved.
Thus we need to expand the knowledge of a covering space over a digital
wedge with a compatible adjacency.

This paper is organized as follows. Section 2 provides some basic
notions and terminology. Section 3 reviews properties of a covering
space over a digital wedge consisting of two simple closed k-curves with
a compatible adjacency. Section 4 investigates properties of a gener-
alized universal covering space over a digital wedge. Section 5 studies
an existence problem of a generalized universal covering over a digital
wedge.

2. Preliminaries

Let Zn and N denote the sets of points in the Euclidean nD space with
integer coordinates and the set of natural numbers n ∈ N, respectively.
Since a digital image in Zn can be regarded as a set with one of the
k-adjacency relations of Zn or a digital k-graph [27], in this paper we
use the terminology digital space instead of digital image.

As a generalization of the k-adjacency relations of 2D and 3D digital
space in [25, 27], we have used k-adjacency relations of Zn for studying
a multi-dimensional digital space X ⊂ Zn induced from the following
criterion [4] (see also [6, 9]):
For a natural number m with 1 ≤ m ≤ n, two distinct points p =
(pi)i∈[1,n]Z and q = (qi)i∈[1,n]Z are km- (or k(m, n)-)adjacent if
• there are at most m indices i such that |pi − qi| = 1 and
• for all other indices i such that |pi − qi| 6= 1, pi = qi.

By using this operator, we established the following k := km :=
k(m,n)-adjacency relations of Zn.

Proposition 2.1. [15] In Zn we obtain the following k-adjacency
relations.
k := k(m,n) =

∑n−1
i=n−m 2n−iCn

i , where Cn
i = n!

(n−i)! i! .

We say that two subsets (A, k) and (B, k) of (X, k) are k-adjacent to
each other if A∩B = ∅ and there are points a ∈ A and b ∈ B such that
a and b are k-adjacent to each other [25]. We say that a set X ⊂ Zn is
k-connected if it is not a union of two disjoint non-empty sets that are
not k-adjacent to each other [25]. For an adjacency relation k of Zn, a
simple k-path with l + 1 elements in Zn is assumed to be an injective
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sequence (xi)i∈[0,l]Z ⊂ Zn such that xi and xj are k-adjacent if and only
if either j = i + 1 or i = j + 1 [25]. If x0 = x and xl = y, then we say
that the length of the simple k-path, denoted by lk(x, y), is the number
l. A simple closed k-curve with l elements in Zn, denoted by SCn,l

k [10],
is the simple k-path (xi)i∈[0,l−1]Z , where xi and xj are k-adjacent if and
only if j = i + 1(mod l) or i = j + 1(mod l) [25].

In order to study both digital continuity and various properties of a
digital k-surface [9, 10], we have used the following digital k-neighborhood.

Definition 1. [6] For a digital space (X, k) in Zn, the digital k-
neighborhood of x0 ∈ X with radius ε is defined in X to be the following
subset of X

Nk(x0, ε) = {x ∈ X| lk(x0, x) ≤ ε} ∪ {x0},
where lk(x0, x) is the length of a shortest simple k-path from x0 to x
and ε ∈ N.

Motivated by both the digital continuity in [27] and the (k0, k1)-
continuity in [2] (see also [6]), the following notion of digital continuity
has been often used for the study of multi-dimensional digital spaces.

Proposition 2.2. [13] Let (X, k0) and (Y, k1) be digital spaces in
Zn0 and Zn1 , respectively. A function f : X → Y is (k0, k1)-continuous
if and only if for every x ∈ X f(Nk0(x, 1)) ⊂ Nk1(f(x), 1).

Since a digital space can be considered to be a digital k-graph, we
can use a (k0, k1)-isomorphism instead of a (k0, k1)-homeomorphism in
[2], as follows.

Definition 2. [7] For two digital spaces (X, k0) in Zn0 and (Y, k1) in
Zn1 , a map h : X → Y is called a (k0, k1)-isomorphism if h is a (k0, k1)-
continuous bijection and further, h−1 : Y → X is (k1, k0)-continuous.
Then we use the notation X ≈(k0,k1) Y . If n0 = n1 and k0 = k1, then
we call it a k0-isomorphism and use the notation X ≈k0 Y .

For a digital space (X, k) and A ⊂ X, (X, A) is called a digital space
pair with k-adjacency [9]. Furthermore, if A is a singleton set {x0}, then
(X,x0) is called a pointed digital space [25]. Motivated by the pointed
digital homotopy in [2], the following notion of relative digital homotopy
to a subset A ⊂ X is often used for studying a digital space (X, k) in Zn

in terms of the k-homotopic thinning and the strong k-deformation re-
tract in [9, 10] (see also [15]). If the identity map 1X is (k, k)-homotopic
relative to {x0} in X to a constant map with space consisting of some
x0 ∈ X, then we say that (X, x0) is pointed k-contractible [2]. Indeed,
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the notion of k-contractility is slightly different from the contractility in
Euclidean topology [2] (see also [12]).

Unlike the two digital fundamental groups [1, 24], motivated by Khal-
imsky’s digital k-fundamental group in [23], for a digital space (X, x0)
the paper [2] establishes the digital k-fundamental group πk(X,x0) which
is a group [2], where the base point is assumed as a point which is not
deletable by a strong deformation retract [11]. Besides, if X is pointed k-
contractible, then πk(X, x0) is proved trivial [2]. Let ((X, A), k) be a dig-
ital space pair with k-adjacency. A map f : ((X, A), k0) → ((Y, B), k1)
is called (k0, k1)-continuous if f is (k0, k1)-continuous and f(A) ⊂ B
[8]. If A = {a}, B = {b}, we write (X,A) = (X, a), (Y, B) = (Y, b),
and we say that f is a pointed (k0, k1)-continuous map [25]. Besides, a
(k0, k1)-continuous map f : ((X,x0), k0) → ((Y, y0), k1) induces a group
homomorphism f∗ : πk0(X,x0) → πk1(Y, y0) given by f∗([α]) = [f ◦ α],
where [α] ∈ πk0(X, x0) [2].

The following notion has been often used in digital k-homotopy theory
and digital covering theory.

Definition 3. [6] A pointed k-connected digital space (X, x0) is
called simply k-connected if πk(X, x0) is a trivial group.

Theorem 2.3. [6] (see also [11]) πk(SCn,l
k ) is an infinite cyclic group.

Precisely, πk(SCn,l
k ) ' (lZ,+), where SCn,l

k is not k-contractible and
“ '” means a group isomorphism.

3. Generalized Universal Covering Space over a Digital Wedge

Some properties of a digital covering space including the unique lift-
ing property [6] and digital homotopy lifting theorem [5] have been sub-
stantially used in calculating πk(X, x0) and classifying digital spaces
[9, 10, 11, 12, 13, 14, 15, 16, 17], proving an existence of a universal cov-
ering space [17] and studying the Cartesian product of universal covering
property [16]. Let us now recall the axiom of a digital covering space
which is equivalent to the earlier version in [5, 6]. In this section we will
refer to a simpler form of a digital covering space (see Proposition 3.2).

Proposition 3.1. [6] (see also [9]) Let (E, k0) and (B, k1) be digital
spaces in Zn0 and Zn1 , respectively. Let p : E → B be a (k0, k1)-
continuous surjection. Suppose, for any b ∈ B, there exists ε ∈ N such
that
(1) for some index set M , p−1(Nk1(b, ε)) = ∪i∈MNk0(ei, ε) with ei ∈
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p−1(b);
(2) if i, j ∈ M and i 6= j, then Nk0(ei, ε) ∩ Nk0(ej , ε) is an empty set;
and
(3) the restriction map p on Nk0(ei, ε) is a (k0, k1)-isomorphism for all
i ∈ M .
Then, the map p is called a (k0, k1)-covering map and (E, p,B) is said to
be a (k0, k1)-covering. The digital space E is called a (k0, k1)-covering
space over B.

In Proposition 3.1 we may take ε = 1 [9] (see also [3]). Recently,
by using the surjection instead of the (k0, k1)-continuous surjection of
Proposition 3.1, the paper [18] improves the axiom of a digital (k0, k1)-
covering, as follows.

Proposition 3.2. [22] Let us replace the (k0, k1)-continuous surjec-
tion of Proposition 3.1 by a surjection. Then the map p is a (k0, k1)-
covering map.

Definition 4. [9] A (k0, k1)-covering (E, p, B) is called a radius n-
(k0, k1)-covering if ε ≥ n.

According to Definition 4, we clearly observe that a (k0, k1)-covering
of Proposition 3.1 is obviously a radius 1-(k0, k1)-covering [9].

For three digital spaces (E, k0) in Zn0 , (B, k1) in Zn1 , and (X, k2)
in Zn2 , let p : E → B be a (k0, k1)-continuous map. For a (k2, k1)-
continuous map f : (X, k2) → (B, k1), as the digital analogue of the
lifting in [26], we say that a digital lifting of f is a (k2, k0)-continuous
map f̃ : X → E such that p ◦ f̃ = f [6]. Thus, the unique digital lifting
theorem in [6] (see also [9, 12]) and digital homotopy lifting theorem
was introduced in [5], which plays an important role in studying digital
covering theory.

Although in algebraic topology it is well-known that a simply con-
nected and locally path connected covering space is a universal covering
space [28], in digital covering theory we can propose that a generalized
universal covering space has its intrinsic feature. The following theorem
has been often used in studying the digital lifting theorem.

Unlike the non-2-contractibility of Z, we can observe the simply 2-
connectedness of Z [13], which can be essential to the proof of the gen-
eralized lifting theorem in [3, 13]. While the universal property of a
digital covering in [3] was studied for a radius 2-(k0, k1)-covering with
some hypothesis. As a generalization of the universal covering property
of [3], we obtain the following.
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Definition 5. [16] We say that (Ẽ, p, B) is a universal (k̃, k)-covering

if for any radius 2-(k1, k)-covering map q : X̃ → B, there is always a

(k̃, k1)-continuous map f : (Ẽ, k̃) → (X̃, k̃1) such that q ◦ f = p.

In Definition 5, the space (Ẽ, k̃) is called a universal (k̃, k)-covering
space of (B, k) and (Ẽ, p, B) is called a universal (k̃, k)-covering. In
addition, we say that (Ẽ, k̃) has the universal (k̃, k)-covering property.
Indeed, the paper [3] studied the universal (2, k)-covering property.

As a generalization of the universal (k̃, k)-covering of Definition 5, we
can established the following:

Definition 6. [19] Let ((E, e0), k̃) and ((B, b0), k) be two digital

spaces in Zn0 and Zn1 , respectively. A (k̃, k)-covering map p : ((E, e0), k̃)
→ ((B, b0), k) is called generalized universal if for any pointed (k′, k)-
covering map q : ((X,x0), k′) → ((B, b0), k), there exists a pointed

(k̃, k′)-continuous map φ : (E, e0) → (X,x0) such that q ◦ φ = p.

Then, ((E, e0), k0) is called a generalized universal (k̃, k)-covering space

(briefly, GU-(k̃, k)-covering space) of ((B, b0), k). Furthermore, we say

that this (k̃, k)-covering map p has the generalized universal (k̃, k)-
covering property (briefly, GU-(k̃, k)-covering property). Besides, ((E, e0),
p, (B, b0)) is called a generalized universal (k̃, k)-covering (briefly, GU-
(k̃, k)-covering).

The current universal (k0, k1)-covering has no limitation of both the
radius 2-(k0, k1)-covering and the adjacency relations of (E, k0) in Zn0

and (B, k1) in Zn1 related to the (k0, k1)-covering ((E, k0), p, (B, k1)),
where ((E, e0), k0) and ((B, b0), k1) are two digital spaces in Zn0 and Zn1 ,
respectively. In other words, in view of Definition 6, if a given (k0, k1)-
covering does not satisfy a radius 2-(k1, k)-isomorphism, then we cannot
study further the universal (k̃, k)-covering property of (Ẽ, p, B) in [3].
Thus, the paper [19] generalizes the universal (2, k)-covering without
any limitation of SCn,l

k : Let ((Z, 0), p, (SCn,l
k , c0)) be a (2, k)-covering.

Then for any (k0, k)-covering ((X,x0), q, (SCn,l
k , c0)), there is always a

(2, k0)-continuous map f : (Z, 0) → (X, x0) such that q ◦ f = p. As
an example of the GU-(k̃, k)-covering of Definition 6, we obtained the
following:

Theorem 3.3. [19] Consider a (k′, k)-covering (E, p, SCn,l
k ), where

SCn,l
k need not be k-contractible. Then, (E, p, SCn,l

k ) has the GU-(k′, k)-
covering property, where (E, k′) is (k′, 2)-isomorphic to (Z, 2).
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Since the study of a digital covering space over a digital wedge is
very important in digital covering theory, let us now recall a compatible
adjacency of a digital wedge which is an advance form of the former in
[6] (see also [10, 17]).

Definition 7. [21] For pointed digital spaces ((X, x0), k0) in Zn0

and ((Y, y0), k1) in Zn1 , the wedge of (X, k0) and (Y, k1), written (X ∨
Y, (x0, y0)), is the digital space in Zn

{(x, y) ∈ X × Y | x = x0 or y = y0} (3.1)

with the following compatible k(m,n)(or k)-adjacency relative to both
(X, k0) and (Y, k1), and the only one point (x0, y0) in common such that

(W1) the k(m,n) (or k)-adjacency is determined by the numbers m
and n with n = max{n0, n1}, m = max{m0,m1} satisfying (W1−1) be-
low, where the numbers mi are taken from the ki(or k(mi, ni))-adjacency
relations of the given digital spaces ((X, x0), k0) and ((Y, y0), k1), i ∈
{0, 1}.

(W 1-1) In view of (3.1), induced from the projection maps, we can
consider the natural projection maps WX : (X ∨ Y, (x0, y0)) → (X, x0)
and WY : (X ∨ Y, (x0, y0)) → (Y, y0). In relation to the establishment
of a compatible k-adjacency of the digital wedge (X ∨ Y, (x0, y0)), the
following restriction maps of WX and WY on (X × {y0}, (x0, y0)) ⊂
(X ∨ Y, (x0, y0)) and ({x0} × Y, (x0, y0)) ⊂ (X ∨ Y, (x0, y0)) satisfy the
following properties, respectively:{

(1)WX |X×{y0} : (X × {y0}, k) → (X, k0) is a (k, k0)-isomorphism; and

(2) WY |{x0}×Y : ({x0} × Y, k) → (Y, k1) is a (k, k1)-isomorphism.

(W2) Any two distinct elements x(6= x0) ∈ X ⊂ X ∨ Y and y(6= y0) ∈
Y ⊂ X ∨ Y are not k(m,n) (or k)-adjacent to each other.

Example 3.4. [22] Consider the following three simple closed k-
curves in [4, 8, 15].
MSC18 := ((0, 0, 0), (1,−1, 0), (1,−1, 1), (2, 0, 1), (1, 1, 1), (1, 1, 0)) ⊂ Z3,

SC2,6
8 ≈8 ((0, 0), (1, 1), (1, 2), (0, 3), (−1, 2), (−1, 1)) and

SC3,4
26 := ((0, 0, 0), (1, 1, 1), (0, 2, 2), (−1, 1, 1)) .
Then we can consider digital wedges with compatible adjacency, as

follows.
(1) (MSC18 ∨ SC2,6

8 , 18) and (SC3,4
26 ∨ SC2,6

8 , 26).
(2) No existence of compatible k-adjacency of SC3,4

26 ∨MSC18.

Comparing with the former adjacency of a digital wedge in [12, 15],
we obtain the following.



382 Sang-Eon Han

Remark 3.5. The compatible adjacency of Definition 7 is a gener-
alization of the former version in [3, 12, 14].

4. Some Properties of Infinite Fold Covering Spaces over a
Digital Wedge Consisting of Two Simple Closed k-Curves

In the study of an existence of an infinite fold covering space over
SC2,6

8 ∨ SC2,6
8 , the recent papers [3, 6, 13, 16, 18, 19] suggested two

types of infinite fold covering spaces over SC2,6
8 ∨ SC2,6

8 . Now we have
the following question: How many kinds of infinite fold covering spaces
over SCn1,l1

k1
∨ SCn2,l2

k2
with a compatible k-adjacency in Zn. Thus, in

this paper by using compatible adjacency of a digital wedge, we can
study infinite fold digital covering spaces over a digital wedge consisting
of two simple closed k-curves without any limitation of both a dimension
and a digital wedge consisting of two simple closed k-curves.

Theorem 4.1. Assume SCn1,l1
k1

∨SCn2,l2
k2

with a compatible k-adjacency

in Zn, where n = max{n1, n2}. Then there are countably many infinite

fold (k′, k)-covering spaces (E′, k′) in Zm over (SCn1,l1
k1

∨ SCn2,l2
k2

, k),
m ≥ n such that
(1) each of them is the type 1 of Figure 1 and
(2) (E′, k′) is (k′, 8)-isomorphic to an infinite fold (8, 8)-covering space

in Z2 over (SC2,l1
8 ∨ SC2,l2

8 , 8).

Proof: If SCn1,l1
k1

∨ SCn2,l2
k2

has a compatible k-adjacency in Zn, n =
max{n1, n2}, then it is (k, 8)-isomorphic to (SC2,l1

8 ∨ SC2,l2
8 , 8) because

each point x ∈ SCn1,l1
k1

∨ SCn2,l2
k2

, which is not the common point, has
Nk(x, 1) ⊂ SCn1,l1

k1
∨ SCn2,l2

k2
such that Nk(x, 1) ≈(k,2) N2(0, 1) in Z

and further, the common point denoted by x0 ∈ SCn1,l1
k1

∨ SCn2,l2
k2

has
Nk(x0, 1) ≈(k,8) N8(v0, 1), where N8(v0, 1) ⊂ SC2,l1

8 ∨ SC2,l2
8 and v0 is

the common point of the digital wedge of SC2,li
8 , i ∈ {1, 2}. Therefore, it

implies that there is a local (k, 8)-isomorphic bijection between (SCn1,l1
k1

∨
SCn2,l2

k2
, k) and (SC2,l1

8 ∨ SC2,l2
8 , 8). In view of this assertion, for some

m ∈ N with m ≥ n (here the number m need not be equal to n), we
obtain an infinite fold (k′, 8)-covering space (E′, k′) ⊂ Zm over (SC2,l1

8 ∨
SC2,l2

8 , 8) having the type 1 of Figure 1, and further, (E′, k′) ≈(k′,8)

(F, 8), where (F, 8) is an infinite fold (8, 8)-covering space over SC2,l1
8 ∨

SC2,l2
8 (see the covering space over SC2,l1

8 ∨ SC2,l2
8 in Figure 1(b)). As



Properties of a Generalized Universal Covering Space over a Digital Wedge... 383

presented in (a) of Figure 1, since the object (E′, k′) is assumed in Zm

with m ≥ n with n = max{n1, n2}, the existence of (E′, k′) in Zm is
valid. For instance, for any finite numbers li of SCni,li

ki
, i ∈ {0, 1} we

can figure out the two digital spaces (E′, k′) and (F, 8) presented in (a)
and (b) of Figure 1. ¤
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Figure 1. (a) Infinite fold (k′, k)-covering
(E′, p, SCn1,l1

k1
∨SCn2,l2

k2
) in Zm,m ≥ n, n = max{n1, n2}

(b) Infinite fold (8, 8)-covering (F, p, SC2,l1
8 ∨ SC2,l2

8 ).

Example 4.2. Consider the two digital wedges (MSC18∨SC2,6
8 , 18)

and (SC3,4
26 ∨ SC2,6

8 , 26) in Example 3.4. By using the same method as
Theorem 3.1, we can find countably many infinite fold (3n− 2n− 1, 18)-
covering spaces (E′, p, MSC18 ∨ SC2,6

8 , 18), n ≥ 3 such that (E′, 3n −
2n − 1) is (3n − 2n − 1, 8)-isomorphic to an infinite fold (8, 18)-covering

space (F1, 8) in Z2 over MSC18 ∨ SC2,6
8 having the type 1 of Figure 1.

Besides, by the same method as above, we can find countably many
infinite fold (3m− 1, 26)-covering spaces over (SC3,4

26 ∨SC2,6
8 , 26) having

the type 1 of Figure 1.



384 Sang-Eon Han

5. Remark on a Generalized Universal Covering Space

In algebraic topology it is well-known that the existence problem of
a universal covering space [28]: A simply connected and locally path
connected covering space is a universal covering space. For a digital
wedge consisting of two simple closed 8-curves, the papers [3, 16] deals
with a generalized universal covering space in Z2. But in this paper, by
using a compatible adjacency of a digital wedge of Definition 7, we can
discuss an existence problem of a generalized universal covering space
over a digital wedge consisting of two simple closed k-curves without any
limitation of dimensions of both a digital covering space and a digital
wedge of two simple closed k-curves.

Remark 5.1. As discussed in [16], in view of each of digital covering

spaces over SCn1,l1
k1

∨ SCn2,l2
k2

in Figure 1, we obtain that the digital

covering space (E, k′) ⊂ Zm in Theorem 4.1 cannot be a generalized
universal covering space.

In addition, we can observe that the simply k-connected of a base
space (B, k) need not guarantee the existence of a GU-(k′, k)-covering,
as follows.

Theorem 5.2. Consider a (k, 8)-covering (E, p, SC2,4
8 ∨ SC2,4

8 ) such

that E is simply k-connected. Then, (E, p, SC2,4
8 ∨SC2,4

8 ) need not have
the GU-(k, 8)-covering property.

Before proving this theorem, we had better comment the proof of
the assertion of [18], as follows. In Theorem 5.2, we have corrected by
replacing the word “cannot” of [18] by “need not”. In order to prove
the former version of Theorem 5.2, the paper [18] used an infinite fold
covering space over SC2,4

8 ∨ SC2,4
8 (see Figure 1 of [18]). However, the

picture is ambiguous and is not clear. Thus, the present paper will use
a finite and simple example instead.

Proof: Consider an (8, 8)-covering (E, p, B) such that E is simply
8-connected, where B = SC2,4

8 ∨ SC2,4
8 . Then, (E, p, B) need not have

the GU-(8, 8)-covering property. In order to prove the assertion, we
suffice to give the following counter example. Consider the identity map
1B : B → B so that E = B. Further, consider the (8, 8)-covering map
r : F → B in Figure 2. Then, it is clear that the given identity map
1B : B → B cannot have an (8, 8)-continuous map q : B → F such that
r ◦ q = 1B. ¤
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Figure 2. Configuration of a non-existence of the uni-
versal covering property.

In view of Theorem 5.2, we may have the following question.
[Question A] Does the digital wedge (SC2,4

8 ∨ SC2,4
8 , 8) have the uni-

versal covering space?
As a general form of Question A, we can suggest the following question.
[Open question] Let B := SCn0,l0

k0
∨ SCk1,l1

k1
be a digital wedge with

some compatible k-adjacency, where SCni,li
ki

need not be ki-contractible,
i ∈ {0, 1}. Then we propose an open problem: under what condition of
B is there a universal (k′, k)-covering space over B?
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[1] R. Ayala, E. Domínguez, A.R. Francés, and A. Quintero, Homotopy in digital
spaces, Discrete Applied Math, 125(1) (2003) 3-24.

[2] L. Boxer, A classical construction for the digital fundamental group, Jour. of
Mathematical Imaging and Vision, 10(1999) 51-62.

[3] L. Boxer, Digital Products, Wedge; and Covering Spaces, Jour. of Mathematical
Imaging and Vision 25(2006) 159-171.

[4] S.E. Han, Algorithm for discriminating digital images w.r.t. a digital (k0, k1)-
homeomorphism, Jour. of Applied Mathematics and Computing 18(1-2)(2005)
505-512.

[5] S.E. Han, Digital coverings and their applications, Jour. of Applied Mathematics
and Computing 18(1-2)(2005) 487-495.

[6] S.E. Han, Non-product property of the digital fundamental group, Information
Sciences 171 (1-3)(2005) 73-91.

[7] S.E. Han, On the simplicial complex stemmed from a digital graph, Honam
Mathematical Journal 27 (1)(2005) 115-129.

[8] S.E. Han, Erratum to “Non-product property of the digital fundamental group”,
Information Sciences 176(1)(2006) 215-216.



386 Sang-Eon Han

[9] S.E. Han, Discrete Homotopy of a Closed k-Surface, LNCS 4040, Springer-
Verlag, Berlin, pp.214-225 (2006).

[10] S.E. Han, Minimal simple closed 18-surfaces and a topological preservation of
3D surfaces, Information Sciences 176(2)(2006) 120-134.

[11] S.E. Han, Strong k-deformation retract and its applications, Journal of the Ko-
rean Mathematical Society 44(6)(2007) 1479-1503.

[12] S.E. Han, Comparison among digital fundamental groups and its applications,
Information Sciences 178(2008) 2091-2104.

[13] S.E. Han, Equivalent (k0, k1)-covering and generalized digital lifting, Information
Sciences 178(2)(2008)550-561.

[14] S.E. Han, Map preserving local properties of a digital image Acta Applicandae
Mathematicae 104(2) (2008) 177-190.

[15] S.E. Han, The k-homotopic thinning and a torus-like digital image in Zn, Journal
of Mathematical Imaging and Vision 31 (1)(2008) 1-16.

[16] S.E. Han, Cartesian product of the universal covering property Acta Applicandae
Mathematicae 108 (2009) 363-383.

[17] S.E. Han, Regural covering space in digital covering theory and its applications,
Honam Mathematical Journal 31(3) (2009) 279-292.

[18] S.E. Han, Remark on a generalized universal covering space, Honam Mathemat-
ical Jour 31(3) (2009) 267-278.

[19] S.E. Han, Existence problem of a generalized universal covering space, Acta
Applicandae Mathematicae 109(3) (2010) 805-827.

[20] S.E. Han, KD-(k0, k1)-homotopy equivalence and its applications Journal of Ko-
rean Mathematical Society 47(5) (2010) 1031-1054.

[21] S.E. Han, Ultra regular covering space and its automorphism group International
Journal of Applied Mathematics Computer Science, accepted.

[22] S.E. Han, Properties of a digital covering spaces and discrete Deck’s transforma-
tion group Acta Applicandae Mathematicae, submitted

[23] E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings
IEEE International Conferences on Systems, Man, and Cybernetics(1987) 227-
234.

[24] T.Y. Kong, A digital fundamental group Computers and Graphics 13 (1989)
159-166.

[25] T.Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Process-
ing, Elsevier Science, Amsterdam, (1996).

[26] W.S. Massey, Algebraic Topology, Springer-Verlag, New York, 1977.
[27] A. Rosenfeld, Digital topology, Am. Math. Mon. 86(1979) 76-87.
[28] E.H. Spanier, Algebraic Topology, McGraw-Hill Inc., New York, 1966.



Properties of a Generalized Universal Covering Space over a Digital Wedge... 387

Faculty of Liberal Education,
Institute of Pure and Applied Mathematics,
Chonbuk National University,
Jeonju-City Jeonbuk, 561-756,
Republic of Korea
Tel: +82-63-270-4449,
E-mail:sehan@jbnu.ac.kr


