DOI QR코드

DOI QR Code

ON STABILITY OF EINSTEIN WARPED PRODUCT MANIFOLDS

  • Pyo, Yong-Soo (Department of Applied Mathematics, Pukyong National University) ;
  • Kim, Hyun-Woong (Department of Applied Mathematics, Pukyong National University) ;
  • Park, Joon-Sik (Department of Mathematics, Pusan University of Foreign Studies)
  • 투고 : 2009.09.24
  • 심사 : 2010.03.12
  • 발행 : 2010.03.25

초록

Let (B, $\check{g}$) and (N, $\hat{g}$) be Einstein manifolds. Then, we get a complete (necessary and sufficient) condition for the warped product manifold $B\;{\times}_f\;N\;:=\;(B\;{\times}\;N,\;\check{g}\;+\;f{\hat{g}}$) to be Einstein, and obtain a complete condition for the Einstein warped product manifold $B\;{\times}_f\;N$ to be weakly stable. Moreover, we get a complete condition for the map i : ($B,\;\check{g})\;{\times}\;(N,\;\hat{g})\;{\rightarrow}\;B\;{\times}_f\;N$, which is the identity map as a map, to be harmonic. Under the assumption that i is harmonic, we obtain a complete condition for $B\;{\times}_f\;N$ to be Einstein.

키워드

참고문헌

  1. A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin (1987).
  2. S. Helgeson, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York (1978).
  3. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Wiley-Interscience, New York (1963).
  4. K. Nomizu and T. Sasaki, Affine Differential Geometry - Geometry of Affine Immersions, Cambridge Univ. Press (1994).
  5. J.-S. Park. Harmonic inner automorphisms of compact connected semisimple Lie groups, Tohoku Math. J. 42 (1990), 83-91. https://doi.org/10.2748/tmj/1178227695
  6. J.-S. Park. Critical homogeneous metrics on the Heisenberg manifold, Inter. Inform. Sci. 11 (2005), 31-34.
  7. J.-S. Park and W. T. Oh, The Abbena- Thurston manifold as a critical point, Can. Math. Bull. 39 (1996). 352-359. https://doi.org/10.4153/CMB-1996-042-3
  8. N. Shimakura, Elliptic Partial Differential Operators of Elliptic Type, Transl. Math. Monographs, Vol. 99, Amer. Math. Soc., Providence, HI, 1991.
  9. H. Urakawa, Calculus of Variations and Harmonic Maps, Transl. Math. Monographs, Vol. 99, Amer. Math. Soc., Providence, RI, 1993.