References
- Araujo, A. and Gine, E.(1980) The Central Limit Theorem for Real and Banach Valued Random Variables, John Wiley and Sons.
- Bosq, D. (2004) Berry-Essen inequality for linear processes in Hilbert spaces, Statist. Probab. Lett. 63 243-247
- Brockwell, P. and Davis, R.(1987) Time series, Theory and Method. Springer, Berlin
- Burton, R., Dabrowski, A.R. and Dehling, H.(1986) An invariance principle for weakly associated random vectors, Stochastic Processes Appl. 23 301-306 https://doi.org/10.1016/0304-4149(86)90043-8
- Chandra, T. K., Ghosal, S. (1996a). Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables, Acta. Math. Hungar. 32 327-336.
- Chandra, T. K., Ghosal, S. (1996b). The strong law of large numbers for weighted averages under dependence assumptions, J. Theor. Probab. 9 797-809. https://doi.org/10.1007/BF02214087
- Esary, J. Proschan, F. and Walkup, D. (1967). Association of random variables with applications, Ann. Math. Stat. 38 1466-1474. https://doi.org/10.1214/aoms/1177698701
- Joag-Dev, K. and Proschan, F. (1983) Negative association of random variables with applications, Ann. Statist. 11 286-295 https://doi.org/10.1214/aos/1176346079
- Kim, T.S., Ko, M.H. and Lee I.H. (2004). On the strong law for asymptotically almost negatively associated random variables, Rocky Mountain J. Math. 34 979-989. https://doi.org/10.1216/rmjm/1181069838
- Ko, M.H., Kim, T .S. and Han, K.H. (2009) A note on the almost sure convergence for dependent random variables in a Hilbert space, J. Them. Probab. 22 506-513 https://doi.org/10.1007/s10959-008-0144-z
- Ko, M.H. (2009) A central limit theorem for linear process in a Hilbert space under negative association, Korean Commun. Stat. 16 687-696 https://doi.org/10.5351/CKSS.2009.16.4.687
- Melevede, F., Peligrad, M. and Utev, S. (1997) Sharp conditions for the CLT of linear processes in a Hilbert space, J. Theor. Probab. 10 681-693 https://doi.org/10.1023/A:1022653728014
- Stout, W.F. (1995) Almost sure convergence, Academic, New York.