DOI QR코드

DOI QR Code

ON TATE-SHAFAREVICH GROUPS OVER CYCLIC EXTENSIONS

  • Yu, Ho-Seog (Department of Applied Mathematics, Sejong University)
  • 투고 : 2009.12.03
  • 심사 : 2010.01.15
  • 발행 : 2010.03.25

초록

Let A be an abelian variety defined over a number field K and let L be a cyclic extension of K with Galois group G = <${\sigma}$> of order n. Let III(A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and of A over L. Assume III(A/L) is finite. Let M(x) be a companion matrix of 1+x+${\cdots}$+$x^{n-1}$ and let $A^x$ be the twist of $A^{n-1}$ defined by $f^{-1}{\circ}f^{\sigma}$ = M(x) where $f:A^{n-1}{\rightarrow}A^x$ is an isomorphism defined over L. In this paper we compute [III(A/K)][III($A^x$/K)]/[III(A/L)] in terms of cohomology, where [X] is the order of an finite abelian group X.

키워드

참고문헌

  1. K. S. Brown, Cohomology of groups, Grad. Texts in Math. 87. Springer-Verlag 1982.
  2. K. Cartan and S. Eilenberg, Homological algebra, Princeton University Press 1956.
  3. C. D. Gonzalez-Aviles, On Tate-Shafarevich groups of abelian varieties, Proc. Amer. Math. Soc. 128 (2000), 953-961. https://doi.org/10.1090/S0002-9939-99-05244-2
  4. G. Hochschild and J-P. Serre, Cohomology of Group Extension, Trans. Amer. Math. Soc. 74 (1953), 110-134 https://doi.org/10.1090/S0002-9947-1953-0052438-8
  5. J. S. Milne, On the arithmetic of abelian varieties, Inventiones Math. 17 (1972), 177-190. https://doi.org/10.1007/BF01425446
  6. J. S. Milne, Arithmetic Duality Theorems, Perspectives in Math. vol. 1. Academic Press Inc. 1986.
  7. Hwasln Park, Idempotent relations and the conjecture of Birch and Swinnerton-Dyer, In: Algebra and Topology 1990 (Taejon, 1990), 97-125.
  8. Carl Riehm, The Corestriction of Algebraic Structures, Inven. Math. 11 (1970), 73-98. https://doi.org/10.1007/BF01389807
  9. L. Solomon, Similarity of the companion matrix and its transpose, Linear Algebra Appl. 302/303 (1999), 555-561. https://doi.org/10.1016/S0024-3795(99)00210-4
  10. J. Tate, Relations between $K_2$ and Galois cohomology, Inventiones Math. 36 (1976), 257-274. https://doi.org/10.1007/BF01390012
  11. H. Yu, On Tate-Shafarevich groups over Galois extensions, Israel Journal of Math. 141 (2004), 211-220. https://doi.org/10.1007/BF02772219

피인용 문헌

  1. ON THE TATE-SHAFAREVICH GROUPS OVER DEGREE 3 NON-GALOIS EXTENSIONS vol.38, pp.1, 2016, https://doi.org/10.5831/HMJ.2016.38.1.85
  2. ON THE TATE-SHAFAREVICH GROUPS OVER BIQUADRATIC EXTENSIONS vol.37, pp.1, 2015, https://doi.org/10.5831/HMJ.2015.37.1.1