Pivot Interpolation for Dynamic Locomotion Expression of Fishes

어류의 역동적 움직임 표현을 위한 기준점 적용 보간법

  • 류남훈 (순천대학교 대학원 컴퓨터과학과) ;
  • 이혜미 (순천대학교 대학원 컴퓨터과학과) ;
  • 유봉길 (순천청암대학 사회복지학과) ;
  • 김응곤 (순천대학교 컴퓨터공학과)
  • Received : 2010.09.10
  • Accepted : 2010.10.15
  • Published : 2010.10.31

Abstract

Due to the improvement in PC performance and the development of computer graphics technology, high quality computer animation in various industrials is on the rise. This study suggests pivot interpolation to realize the process of expressing dynamic and natural motion of fish, the key of expressing the ocean landscape through the morphing technique. By applying fish tail motion, this study solves unnatural speed of the previous morphing technique and realizes the realistic swimming way without simple motion.

PC 성능의 향상 및 컴퓨터 그래픽스 기술의 발달로 인해 사회 각 분야에서 고품질의 컴퓨터 애니메이션이 점차 증가하고 있다. 본 연구에서는 해저의 풍경을 표현함에 있어 가장 핵심이 되는 어류 객체의 역동적이고 자연스러운 움직임을 표현하는 과정을 모핑 기법을 통하여 구현하기 위한 기준점 적용 보간법을 제안한다. 어류 객체의 꼬리 움직임에 적용시킴으로써 기존 모핑 기법이 가지고 있던 부자연스러운 속도감을 해결하고, 단조로운 움직임을 탈피한 현실감 있는 유영 방식을 구현한다.

Keywords

References

  1. T. Xiaoyuan and T. Demetri, "Artificial Fishes : Physics, Locomotion, Perception, Behavior," ACM SIGGRAPH 94, pp.43-50, July 1994.
  2. Kingsley Stephens, Binh Pham, and Aster Wardhani, "Modelling Fish Behaviour," ACM, pp.71-78, 2003.
  3. Micheal Sfakiotakis, David M. Lane, and J. Bruce C. Davies, "Review of Fish Swimming Modes for Aquatic Locomotion," IEEE Journal of Oceanic Engineering, Vol.24, No.2, pp.237-252, 1999.
  4. Marc Ziegler, "Morphological Computation in Underwater Locomotion," Department of Information Technology University of Zurich, pp.5-11, 2005.
  5. Webb, P. W., "Form and Function in Fish Swimming," Sci. Am, Vol.251, pp.58-68, 1984.
  6. Harold C. Sun and Dimitris N. Metaxas, "Automating gait animation," SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, pp.261-270, August 2001.
  7. J. E. Colgate, K. M. Lynch, Control Problems Solved by a Fish's Body and Brain: A Review, Mechanical Engineering Department, Northwestern University.
  8. Micheal Sfakiotakis, David M. Lane, and J. Bruce C. Davies, "Review of Fish Swimming Modes for Aquatic Locomotion," IEEE Journal of Oceanic Engineering, Vol.24, No.2, pp. 237-252, 1999. https://doi.org/10.1109/48.757275
  9. J. Czarnowski, R. Cleary, and B. Creamer, "Exploring the possibility of placing traditional marine vessels under oscillating foil propulsion," Proc.7th(1997) Int. OffshoreandPolarEng. Conf., Honolulu, HI, pp.76-82, May 1997.
  10. Micheal Sfakiotakis, David M. Lane, and J. Bruce C. Davies, "Review of Fish Swimming Modes for Aquatic Locomotion," IEEE Journal of Oceanic Engineering, Vol.24, No.2, pp.237-252, 1999. https://doi.org/10.1109/48.757275
  11. Harold C. Sun and Dimitris N. Metaxas, "Automating gait animation," SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, pp.261-270, August 2001.
  12. Kingsley Stephens, Binh Pham, and Aster Wardhani, "Modelling Fish Behaviour," ACM, pp.71-78, 2003.
  13. Marc Ziegler, "Morphological Computation in Underwater Locomotion," Department of Information Technology University of Zurich, pp.5-11, 2005.