DOI QR코드

DOI QR Code

Molecular characterization and functional analysis of a protease-related protein in Chang-liver cells

  • Wang, Congrui (Department of Biochemistry and Molecular Biology, Xinxiang Medical University) ;
  • Zhang, Huiyong (Department of Life Science and Technology, Xinxiang Medical University) ;
  • Feng, Huigen (Department of Life Science and Technology, Xinxiang Medical University) ;
  • Yang, Baosheng (Department of Life Science and Technology, Xinxiang Medical University) ;
  • Pramanik, Jogenananda (Department of Biochemistry and Molecular Biology, Xinxiang Medical University) ;
  • Guo, Zhikun (Key Open Laboratory for Tissue Regeneration of Henan Universities, Xinxiang Medical University) ;
  • Lin, Juntang (Department of Life Science and Technology, Xinxiang Medical University)
  • Received : 2010.03.12
  • Accepted : 2010.04.27
  • Published : 2010.05.31

Abstract

In this study, the cDNA library of Chang-liver cells was immunoscreened using common ADAMs antibody to obtain ADAM related genes. We found one positive clone that was confirmed as a new gene by Blast, which is an uncharacterized helical and coil protein and processes protease activity, and named protease-related protein 1 (ARP1). The submitted GenBank accession number is AY078070. Molecular characterizations of ARP1 were analyzed with appropriate bioinformatics software. To analyse its expression and function, ARP1 was subcloned into glutathione S-transferase fusion plasmid pGEX-2T and expressed by E. coli system. The in vitro expression product of ARP1 was recognized by common ADAMs antibody with western blot. Interestingly, ARP1 cleaves gelatine at pH9.5, which suggests it is an alkaline protease. Semi-quantitative RT-PCR result indicates that ARP1 mRNA is strongly transcribed in the liver and the treated Chang-liver cells.

Keywords

References

  1. Chang, R. S. (1978) HeLa marker chromosomes, Chang iver cells, and liver-specific functions. Science 199, 567-568. https://doi.org/10.1126/science.622561
  2. Mitsumoto, Y., Sato, K., Ohyashiki, T. and Mohri, T. (1986) Leucine-proton cotransport system in Chang liver cell. J. Biol. Chem. 261, 4549-4554.
  3. Kaviarasan, S., Ramamurthy, N., Gunasekaran, P., Varalakshmi, E. and Anuradha, C. V. (2009) Induction of alcohol-metabolizing enzymes and heat shock protein expression by ethanol and modulation by fenugreek seed polyphenols in Chang liver cells. Toxicol. Mech. Methods. 19, 116-122. https://doi.org/10.1080/15376510802305039
  4. Wang, C. R., Hou, D. Y., Feng, H. G., Yang, B. S., Xu, C. S. and Lin, J. T. (2010) Induction of new ADAM related proteins from treated human Chang-liver cells. Mol. Biol. 44, 5.
  5. Lu X., Lu, D., Scully, M. F. and Kakkar, V. V. (2007) Structure-activity relationship studies on ADAM protein-integrin interactions. Cardiovasc. Hematol. Agents Med. Chem. 5, 29-42. https://doi.org/10.2174/187152507779315822
  6. Amalinei, C., Caruntu, I. D. and Balan, R. A. (2007) Biology of metalloproteinases. Rom. J. Morphol. Embryol. 48, 323-334.
  7. Dalakas, E., Newsome, P. N., Harrison, D. J. and Plevris, J. N. (2005) Hematopoietic stem cell trafficking in liver injury. FASEB J. 19, 1225-1231. https://doi.org/10.1096/fj.04-2604rev
  8. Han, Y. P. (2006) Matrix metalloproteinases, the pros and cons, in liver fibrosis. J. Gastroenterol. Hepatol. Suppl. 3, S88-91.
  9. Black, R. A. and White, J. M. (1998) ADAMs: focus on the protease domain. Curr. Opin. Cell. Biol. 10, 654-659. https://doi.org/10.1016/S0955-0674(98)80042-2
  10. Blobel, C. P. (2002) Functional and biochemical characterization of ADAMs and their predicted role in protein ectodomain shedding. Inflamm. Res. 51, 83-84.
  11. Abe, S., Koyama, K., Usami, S. and Nakamura, Y. (2003) Construction and characterization of a vestibular specific cDNA library using T7-based RNA amplification. J. Hum. Genet. 48, 142-149.
  12. Kim, K. S., Kim, H. W., Chen, T. T. and Kim, Y. T. (2009) Molecular cloning, tissue distribution and quantitative analysis of two proopiomelanocortin mRNAs in Japanese flounder (Paralichthys olivaceus). BMB Rep. 42, 206-211. https://doi.org/10.5483/BMBRep.2009.42.4.206
  13. Lin, J. T., Li, Y. C., Zhang, H. Y. and Xu, C. S. (2004) Construction of Chang Liver cDNA library and immunoscreening of ADAMs related genes. Yi Chuan 26, 793-796.
  14. Nguyen, N. Y., Suzuki, A., Cheng, S. M., Zon, G. and Liu, T. Y. (1986) Isolation and characterization of Limulus C-reactive protein genes. J. Biol. Chem. 261, 10450-10455.
  15. Strausberg, R. L., Feingold, E. A., Grouse, L. H., Derge, J. G., Klausner, R. D., Collins, F. S., Wagner, L., Shenmen, C. M., Schuler, G. D., Altschul, S. F., Zeeberg, B., Buetow, K. H., Schaefer, C. F., Bhat, N. K., Hopkins, R. F., Jordan, H., Moore, T., Max, S. I., Wang, J., Hsieh, F., Diatchenko, L., Marusina, K., Farmer, A. A., Rubin, G. M., Hong, L., Stapleton, M., Soares, M. B., Bonaldo, M. F., Casavant, T. L., Scheetz, T. E., Brownstein, M. J., Usdin, T. B., Toshiyuki, S., Carninci, P., Prange, C., Raha, S. S., Loquellano, N. A., Peters, G. J., Abramson, R. D., Mullahy, S. J., Bosak, S. A., McEwan, P. J., McKernan, K. J., Malek, J. A., Gunaratne, P. H., Richards, S., Worley, K. C., Hale, S., Garcia, A. M., Gay, L. J., Hulyk, S. W., Villalon, D. K., Muzny, D. M., Sodergren, E. J., Lu, X., Gibbs, R. A., Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodrigues, S., Sanchez, A., Whiting, M., Madan, A., Young, A. C., Shevchenko, Y., Bouffard, G. G., Blakesley, R. W., Touchman, J. W., Green, E. D., Dickson, M. C., Rodriguez, A. C., Grimwood, J., Schmutz, J., Myers, R. M., Butterfield, Y. S., Krzywinski, M. I., Skalska, U., Smailus, D. E., Schnerch, A., Schein, J. E., Jones, S. J., Marra, M. A. and Mammalian Gene Collection Program Team. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. U.S.A. 99, 16899-16903. https://doi.org/10.1073/pnas.242603899
  16. Ota, T., Suzuki, Y., Nishikawa, T., Otsuki, T., Sugiyama, T., Irie, R., Wakamatsu, A., Hayashi, K., Sato, H., Nagai, K., Kimura, K., Makita, H., Sekine, M., Obayashi, M., Nishi, T., Shibahara, T., Tanaka, T., Ishii, S., Yamamoto, J., Saito, K., Kawai, Y., Isono, Y., Nakamura, Y., Nagahari, K., Murakami, K., Yasuda, T., Iwayanagi, T., Wagatsuma, M., Shiratori, A., Sudo, H., Hosoiri, T., Kaku, Y., Kodaira, H., Kondo, H., Sugawara, M., Takahashi, M., Kanda, K., Yokoi, T., Furuya, T., Kikkawa, E., Omura, Y., Abe, K., Kamihara, K., Katsuta, N., Sato, K., Tanikawa, M., Yamazaki, M., Ninomiya, K., Ishibashi, T., Yamashita, H., Murakawa, K., Fujimori, K., Tanai, H., Kimata, M., Watanabe, M., Hiraoka, S., Chiba, Y., Ishida, S., Ono, Y., Takiguchi, S., Watanabe, S., Yosida, M., Hotuta, T., Kusano, J., Kanehori, K., Takahashi-Fujii, A., Hara, H., Tanase, T. O., Nomura, Y., Togiya, S., Komai, F., Hara, R., Takeuchi, K., Arita, M., Imose, N., Musashino, K., Yuuki, H., Oshima, A., Sasaki, N., Aotsuka, S., Yoshikawa, Y., Matsunawa, H., Ichihara, T., Shiohata, N., Sano, S., Moriya, S., Momiyama, H., Satoh, N., Takami, S., Terashima, Y., Suzuki, O., Nakagawa, S., Senoh, A., Mizoguchi, H., Goto, Y., Shimizu, F., Wakebe, H., Hishigaki, H., Watanabe, T., Sugiyama, A., Takemoto, M., Kawakami, B., Yamazaki, M., Watanabe, K., Kumagai, A., Itakura, S., Fukuzumi, Y., Fujimori, Y., Komiyama, M., Tashiro, H., Tanigami, A., Fujiwara, T., Ono, T., Yamada, K., Fujii, Y., Ozaki, K., Hirao, M., Ohmori, Y., Kawabata, A., Hikiji, T., Kobatake, N., Inagaki, H., Ikema, Y., Okamoto, S., Okitani, R., Kawakami, T., Noguchi, S., Itoh, T., Shigeta, K., Senba, T., Matsumura, K., Nakajima, Y., Mizuno, T., Morinaga, M., Sasaki, M., Togashi, T., Oyama, M., Hata, H., Watanabe, M., Komatsu, T., Mizushima-Sugano, J., Satoh, T., Shirai, Y., Takahashi, Y., Nakagawa, K., Okumura, K., Nagase, T., Nomura, N., Kikuchi, H., Masuho, Y., Yamashita, R., Nakai, K., Yada, T., Nakamura, Y., Ohara, O., Isogai, T. and Sugano, S. (2004) Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat. Genet. 36, 40-45. https://doi.org/10.1038/ng1285
  17. Wang, H. Y., Chien, H. C., Osada, N., Hashimoto, K., Sugano, S., Gojobori, T., Chou, C. K., Tsai, S. F., Wu, C. I. and Shen, C. K. (2007) Rate of evolution in brain-expressed genes in humans and other primates. PLoS Biol. 5, e13. https://doi.org/10.1371/journal.pbio.0050013
  18. Florea, L., Di Francesco, V., Miller, J., Turner, R., Yao, A., Harris, M., Walenz, B., Mobarry, C., Merkulov, G. V., Charlab, R., Dew, I., Deng, Z., Istrail, S., Li, P. and Sutton, G. (2005) Gene and alternative splicing annotation with AIR. Genome Res. 15, 54-66. https://doi.org/10.1101/gr.2889405
  19. Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K., Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y. (2000) Normalization and subtraction of cap-trapper-selected cDNAs to prepare fulllength cDNA libraries for rapid discovery of new genes. Genome Res. 10, 1617-1630. https://doi.org/10.1101/gr.145100
  20. Xu, C. S. and Chang, C. F. (2008) Expression profiles of the genes associated with metabolism and transport of amino acids and their derivatives in rat liver regeneration. Amino Acids 34, 91-102. https://doi.org/10.1007/s00726-007-0576-2
  21. Liu, H. X, Hu, D. H., Jia, C. Y. and Fu, X. B. (2006) Progress of cellular dedifferentiation research. Chin. J. Traumatol. 9, 308-315.
  22. Geourjon, C. and Deleage, G. (1995) SOPMA: significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. Cabios. 11, 681-684.
  23. Zhang, Q., Yan, X., Zhang, L. and Tang, W. H. (2006) Cloning, Sequence Analysis, and Heterologous Expression of a ${\beta}-Mannanase$ Gene from Bacillus Subtilis Z-2. Mol. Biol. 40, 368-374. https://doi.org/10.1134/S0026893306030034
  24. Lin, L., Wang, X. and Wang, Y. (2006) cDNA clone, fusion expression and purification of the novel gene related to ascorbate peroxidase from Chinese wild Vitis pseudoreticulata in E. coli. Mol. Biol. Rep. 33, 197-206. https://doi.org/10.1007/s11033-006-0008-5
  25. Towbin, H., Staehelin, T. and Gordin, J. (1976) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U.S.A. 76, 4350–4354.
  26. Xia, M., Xue, S. B. and Xu, C. S. (2002) Shedding of TNFR1 in regenerative liver can be induced with TNF alpha and PMA. World J. Gastroenterol. 8, 1129-1133. https://doi.org/10.3748/wjg.v8.i6.1129