DOI QR코드

DOI QR Code

Expression of yeast Hem1 gene controlled by Arabidopsis HemA1 promoter improves salt tolerance in Arabidopsis plants

  • Zhang, Zhi-Ping (College of Horticulture, Nanjing Agricultural University) ;
  • Yao, Quan-Hong (College of Horticulture, Nanjing Agricultural University) ;
  • Wang, Liang-Ju (College of Horticulture, Nanjing Agricultural University)
  • Received : 2010.02.03
  • Accepted : 2010.03.03
  • Published : 2010.05.31

Abstract

5-Aminolevulinate (ALA) is well-known as an essential biosynthetic precursor of all tetrapyrrole compounds, which has been suggested to improve plant salt tolerance by exogenous application. In this work, the gene encoding aminolevulinate synthase (ALA-S) in yeast (Saccharomyces cerevisiae Hem1) was introduced into the genome of Arabidopsis controlled by the Arabidopsis thaliana HemA1 gene promoter. All transgenic lines were able to transcribe the YHem1 gene, especially under light condition. The chimeric protein (YHem1-EGFP) was found co-localizing with the mitochondria in onion epidermal cells. The transgenic Arabidopsis plants could synthesize more endogenous ALA with higher levels of metabolites including chlorophyll and heme. When the $T_2$ homozygous seeds were cultured under NaCl stress, their germination and seedling growth were much better than the wild type. Therefore, introduction of ALA-S gene led to higher level of ALA metabolism with more salt tolerance in higher plants.

Keywords

References

  1. Munns, R. (2002) Comparative physiology of salt and water stress. Plant. Cell. Environ. 25, 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  2. Wang, W. X., Vinocur, B. and Altman, A. (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1-14. https://doi.org/10.1007/s00425-003-1105-5
  3. Von Wettstein. D., Gough, S. and Kannangara, C. G. (1995) Chlorophyll biosynthesis. Plant Cell. 7, 1039-1057. https://doi.org/10.1105/tpc.7.7.1039
  4. Heinemann, I. U., Jahn, M. and Jahn, D. (2008) The biochemistry of heme biosynthesis. Arch. Biochem. Biophys. 474, 238-251. https://doi.org/10.1016/j.abb.2008.02.015
  5. Watanabe, K., Tanaka. T, Hotta, Y., Kuramochi, H. and Takeuchi, Y. (2000) Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regul. 32, 99-103.
  6. Nishihara, E., Kondo, K., Parvez, M. M., Takahashi, K., Watanabe, K. and Tanaka, K. (2003) Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). J. Plant Physiol. 160, 1085-1091. https://doi.org/10.1078/0176-1617-00991
  7. Watanabe, K., Ryoji, O., Rasid, M. M., Suliman, A., Tohru, T., Hitoshi, K. and Yasutomo, T. (2004) Effects of 5-aminolevulinic acid to recover salt damage on cotton, tomato, and wheat seedlings in Saudi Arabia. J. Arid. Land. Stud. 14, 105-113.
  8. Wang, L. J., Jiang, W. B., Liu, H., Liu, W. Q., Kang, L. and Hou, X. L. (2005) Promotion of 5-aminolevulinic acid on germination of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee) seeds under salt stress. J. Integr. Plant Biol. 9, 1084-1091.
  9. Zhang, Z. J., Li, H. Z., Zhou, W. J., Takeuchi, Y. and Yoneyama, K. (2006) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul. 49, 27-34.
  10. Youssef, T. and Awad, M. A. (2008) Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer. J. Plant Growth Regul. 27, 1-9. https://doi.org/10.1007/s00344-007-9025-4
  11. Hofgen, R., Axelsen, K. B., Kannangra, C. G., Schüttke, I., Pohlenz, H. D., Willmitzer, L., Grimm, B. and von, Wettstein. D. (1994) A visible marker for antisense mRNA expression in plants: inhibition of chlorophyll synthesis with a glutamate 1-semialdehyde aminotransferase antisense gene. Proc. Natl. Acad. Sci. U.S.A. 91, 1726-1730. https://doi.org/10.1073/pnas.91.5.1726
  12. Zavgorodnyaya, A., Papenbrock, J. and Grimm, B. (1997) Yeast 5-aminolevulinate synthase provides additional chlorophyll precursor in transgenic tobacco. Plant J. 12, 169-178. https://doi.org/10.1046/j.1365-313X.1997.12010169.x
  13. Jung. S., Yang. K., Lee, D. and Back, K. (2004) Expression of Bradyrhizobium japonicum 5-aminolevulinic acid synthase induces severe photodynamic damage in transgenic rice. Plant Sci. 167, 789-795. https://doi.org/10.1016/j.plantsci.2004.05.038
  14. Jung, S., Back, K., Yang, K., Kuk, Y. I. and Chon, S. U. (2008) Defence response produced during photodynamic damage in transgenic rice overexpressing 5-aminolevulinic acid synthase. Photosynthetica 46, 3-9. https://doi.org/10.1007/s11099-008-0002-3
  15. McCormac, A. C., Fischer, A., Kumar, A. M., Soll, D. and Terry, M. J. (2001) Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J. 25, 549-561. https://doi.org/10.1046/j.1365-313x.2001.00986.x
  16. Zhang, Z. P., Wang, L. J. and Yao, Q. H. (2007) Expression of Saccharomyces cerevisiae Hem1 recombined with Arabidopsis thaliana HemA1 promoter in transgenic tobacco. Acta. Bot. Boreal.-Occident. Sin. 27, 1929-1936. (in Chinese with English abstract)
  17. Zhang, Z. P., Wang, L. J. and Yao, Q. H. (2008) Study on leaf photosynthesis and chlorophyll fluorescence of transgenic tobacco over-producing 5-aminolevulinic acid (ALA). Acta. Bot. Boreal.-Occident. Sin. 28, 1196-1202. (in Chinese with English abstract)
  18. Huang, L. Q. and Castelfranco, P. A. (1988) A re-examination of 5-aminolevulinic acid synthesis by isolated intact developing chloroplasts: the $O_2$ requirement in the light. Plant Sci. 54, 185-192. https://doi.org/10.1016/0168-9452(88)90112-4
  19. Masuda, T., Ohta, H., Shioi, Y. and Takamiya, K. I. (1996) Light regulation of 5-aminolevulinic acid-synthesis system in Cucumis sativus: light stimulates activity of glutamyltRNA reductase during greening. Plant Physiol. Biochem. 34, 11-16.
  20. Huang, B. K., Xu, S., Xuan, W., Li, M., Cao, Z.Y., Liu, K. L., Ling, T. F. and Shen, W. B. (2006) Carbon monoxide alleviates salt-induced oxidative damage in wheat seedling leaves. J. Integrative Plant Biology 48, 249-254. https://doi.org/10.1111/j.1744-7909.2006.00220.x
  21. Abdelkader, A. F., Aronsson, H. and Sundqvist, C. (2007) High salt stress in wheat leaves causes retardation of chlorophyll accumulation due to a limited rate of protochlorophyllide formation. Physiol. Plant 130, 157-166. https://doi.org/10.1111/j.1399-3054.2007.00885.x
  22. Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  23. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  24. Weigel, D. and Glazebrook, J (2002) Arabidopsis: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, USA.
  25. Harel, E. and Klein, S. (1972) Light dependent formation of 5-aminolevulinic acid in etiolated leaves of higher plants. Biochem. Biophys. Res. Commun. 49, 364-370. https://doi.org/10.1016/0006-291X(72)90419-6
  26. Mauzerall, D. and Cranick, S. (1956) The occurrence and determination of ${\delta}-aminolevulinic$ acid and porphobilinogen in urine. J. Biol. Chem. 219, 435-446.
  27. Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzymol. 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
  28. Lombardo, M. E., Araujo, L.S. and Batlle, A. (2003) 5-Aminolevulinic acid synthesis in epimastigotes of Trypanosoma cruzi. Int. J. Biochem. Cell. Biol. 35, 1263-1271. https://doi.org/10.1016/S1357-2725(03)00033-5

Cited by

  1. Expression of yeast Hem1 controlled by Arabidopsis HemA1 promoter enhances leaf photosynthesis in transgenic tobacco vol.38, pp.7, 2011, https://doi.org/10.1007/s11033-010-0564-6
  2. Role of nitrogen metabolism in the development of salt tolerance in barley plants vol.61, pp.1, 2014, https://doi.org/10.1134/S1021443713060022
  3. 5-Aminolevulinic acid promotes anthocyanin accumulation in Fuji apples vol.69, pp.3, 2013, https://doi.org/10.1007/s10725-012-9772-5
  4. Characterization of Three Homoeologous cDNAs Encoding Chloroplast-targeted Aminolevulinic Acid Dehydratase in Common WheatF vol.53, pp.12, 2011, https://doi.org/10.1111/j.1744-7909.2011.01083.x
  5. Effects of ALA on Photosynthesis, Antioxidant Enzyme Activity, and Gene Expression, and Regulation of Proline Accumulation in Tomato Seedlings Under NaCl Stress vol.34, pp.3, 2015, https://doi.org/10.1007/s00344-015-9499-4
  6. Study on salt tolerance withYHem1transgenic canola (Brassica napus) vol.154, pp.2, 2015, https://doi.org/10.1111/ppl.12282
  7. ALA-Induced Flavonols Accumulation in Guard Cells Is Involved in Scavenging H2O2 and Inhibiting Stomatal Closure in Arabidopsis Cotyledons vol.7, 2016, https://doi.org/10.3389/fpls.2016.01713
  8. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells vol.7, 2016, https://doi.org/10.3389/fpls.2016.00482
  9. Functional characterization of the two ferrochelatases inArabidopsis thaliana vol.38, pp.2, 2015, https://doi.org/10.1111/pce.12248
  10. Promotive effects of 5-aminolevulinic acid on fruit quality and coloration of Prunus persica (L.) Batsch vol.217, 2017, https://doi.org/10.1016/j.scienta.2017.02.009
  11. 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review vol.87, pp.2, 2019, https://doi.org/10.1007/s10725-018-0463-8