References
- Munns, R. (2002) Comparative physiology of salt and water stress. Plant. Cell. Environ. 25, 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
- Wang, W. X., Vinocur, B. and Altman, A. (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1-14. https://doi.org/10.1007/s00425-003-1105-5
- Von Wettstein. D., Gough, S. and Kannangara, C. G. (1995) Chlorophyll biosynthesis. Plant Cell. 7, 1039-1057. https://doi.org/10.1105/tpc.7.7.1039
- Heinemann, I. U., Jahn, M. and Jahn, D. (2008) The biochemistry of heme biosynthesis. Arch. Biochem. Biophys. 474, 238-251. https://doi.org/10.1016/j.abb.2008.02.015
- Watanabe, K., Tanaka. T, Hotta, Y., Kuramochi, H. and Takeuchi, Y. (2000) Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regul. 32, 99-103.
- Nishihara, E., Kondo, K., Parvez, M. M., Takahashi, K., Watanabe, K. and Tanaka, K. (2003) Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). J. Plant Physiol. 160, 1085-1091. https://doi.org/10.1078/0176-1617-00991
- Watanabe, K., Ryoji, O., Rasid, M. M., Suliman, A., Tohru, T., Hitoshi, K. and Yasutomo, T. (2004) Effects of 5-aminolevulinic acid to recover salt damage on cotton, tomato, and wheat seedlings in Saudi Arabia. J. Arid. Land. Stud. 14, 105-113.
- Wang, L. J., Jiang, W. B., Liu, H., Liu, W. Q., Kang, L. and Hou, X. L. (2005) Promotion of 5-aminolevulinic acid on germination of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee) seeds under salt stress. J. Integr. Plant Biol. 9, 1084-1091.
- Zhang, Z. J., Li, H. Z., Zhou, W. J., Takeuchi, Y. and Yoneyama, K. (2006) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul. 49, 27-34.
- Youssef, T. and Awad, M. A. (2008) Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer. J. Plant Growth Regul. 27, 1-9. https://doi.org/10.1007/s00344-007-9025-4
- Hofgen, R., Axelsen, K. B., Kannangra, C. G., Schüttke, I., Pohlenz, H. D., Willmitzer, L., Grimm, B. and von, Wettstein. D. (1994) A visible marker for antisense mRNA expression in plants: inhibition of chlorophyll synthesis with a glutamate 1-semialdehyde aminotransferase antisense gene. Proc. Natl. Acad. Sci. U.S.A. 91, 1726-1730. https://doi.org/10.1073/pnas.91.5.1726
- Zavgorodnyaya, A., Papenbrock, J. and Grimm, B. (1997) Yeast 5-aminolevulinate synthase provides additional chlorophyll precursor in transgenic tobacco. Plant J. 12, 169-178. https://doi.org/10.1046/j.1365-313X.1997.12010169.x
- Jung. S., Yang. K., Lee, D. and Back, K. (2004) Expression of Bradyrhizobium japonicum 5-aminolevulinic acid synthase induces severe photodynamic damage in transgenic rice. Plant Sci. 167, 789-795. https://doi.org/10.1016/j.plantsci.2004.05.038
- Jung, S., Back, K., Yang, K., Kuk, Y. I. and Chon, S. U. (2008) Defence response produced during photodynamic damage in transgenic rice overexpressing 5-aminolevulinic acid synthase. Photosynthetica 46, 3-9. https://doi.org/10.1007/s11099-008-0002-3
- McCormac, A. C., Fischer, A., Kumar, A. M., Soll, D. and Terry, M. J. (2001) Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J. 25, 549-561. https://doi.org/10.1046/j.1365-313x.2001.00986.x
- Zhang, Z. P., Wang, L. J. and Yao, Q. H. (2007) Expression of Saccharomyces cerevisiae Hem1 recombined with Arabidopsis thaliana HemA1 promoter in transgenic tobacco. Acta. Bot. Boreal.-Occident. Sin. 27, 1929-1936. (in Chinese with English abstract)
- Zhang, Z. P., Wang, L. J. and Yao, Q. H. (2008) Study on leaf photosynthesis and chlorophyll fluorescence of transgenic tobacco over-producing 5-aminolevulinic acid (ALA). Acta. Bot. Boreal.-Occident. Sin. 28, 1196-1202. (in Chinese with English abstract)
-
Huang, L. Q. and Castelfranco, P. A. (1988) A re-examination of 5-aminolevulinic acid synthesis by isolated intact developing chloroplasts: the
$O_2$ requirement in the light. Plant Sci. 54, 185-192. https://doi.org/10.1016/0168-9452(88)90112-4 - Masuda, T., Ohta, H., Shioi, Y. and Takamiya, K. I. (1996) Light regulation of 5-aminolevulinic acid-synthesis system in Cucumis sativus: light stimulates activity of glutamyltRNA reductase during greening. Plant Physiol. Biochem. 34, 11-16.
- Huang, B. K., Xu, S., Xuan, W., Li, M., Cao, Z.Y., Liu, K. L., Ling, T. F. and Shen, W. B. (2006) Carbon monoxide alleviates salt-induced oxidative damage in wheat seedling leaves. J. Integrative Plant Biology 48, 249-254. https://doi.org/10.1111/j.1744-7909.2006.00220.x
- Abdelkader, A. F., Aronsson, H. and Sundqvist, C. (2007) High salt stress in wheat leaves causes retardation of chlorophyll accumulation due to a limited rate of protochlorophyllide formation. Physiol. Plant 130, 157-166. https://doi.org/10.1111/j.1399-3054.2007.00885.x
- Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
- Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- Weigel, D. and Glazebrook, J (2002) Arabidopsis: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, USA.
- Harel, E. and Klein, S. (1972) Light dependent formation of 5-aminolevulinic acid in etiolated leaves of higher plants. Biochem. Biophys. Res. Commun. 49, 364-370. https://doi.org/10.1016/0006-291X(72)90419-6
-
Mauzerall, D. and Cranick, S. (1956) The occurrence and determination of
${\delta}-aminolevulinic$ acid and porphobilinogen in urine. J. Biol. Chem. 219, 435-446. - Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzymol. 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
- Lombardo, M. E., Araujo, L.S. and Batlle, A. (2003) 5-Aminolevulinic acid synthesis in epimastigotes of Trypanosoma cruzi. Int. J. Biochem. Cell. Biol. 35, 1263-1271. https://doi.org/10.1016/S1357-2725(03)00033-5
Cited by
- Expression of yeast Hem1 controlled by Arabidopsis HemA1 promoter enhances leaf photosynthesis in transgenic tobacco vol.38, pp.7, 2011, https://doi.org/10.1007/s11033-010-0564-6
- Role of nitrogen metabolism in the development of salt tolerance in barley plants vol.61, pp.1, 2014, https://doi.org/10.1134/S1021443713060022
- 5-Aminolevulinic acid promotes anthocyanin accumulation in Fuji apples vol.69, pp.3, 2013, https://doi.org/10.1007/s10725-012-9772-5
- Characterization of Three Homoeologous cDNAs Encoding Chloroplast-targeted Aminolevulinic Acid Dehydratase in Common WheatF vol.53, pp.12, 2011, https://doi.org/10.1111/j.1744-7909.2011.01083.x
- Effects of ALA on Photosynthesis, Antioxidant Enzyme Activity, and Gene Expression, and Regulation of Proline Accumulation in Tomato Seedlings Under NaCl Stress vol.34, pp.3, 2015, https://doi.org/10.1007/s00344-015-9499-4
- Study on salt tolerance withYHem1transgenic canola (Brassica napus) vol.154, pp.2, 2015, https://doi.org/10.1111/ppl.12282
- ALA-Induced Flavonols Accumulation in Guard Cells Is Involved in Scavenging H2O2 and Inhibiting Stomatal Closure in Arabidopsis Cotyledons vol.7, 2016, https://doi.org/10.3389/fpls.2016.01713
- ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells vol.7, 2016, https://doi.org/10.3389/fpls.2016.00482
- Functional characterization of the two ferrochelatases inArabidopsis thaliana vol.38, pp.2, 2015, https://doi.org/10.1111/pce.12248
- Promotive effects of 5-aminolevulinic acid on fruit quality and coloration of Prunus persica (L.) Batsch vol.217, 2017, https://doi.org/10.1016/j.scienta.2017.02.009
- 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review vol.87, pp.2, 2019, https://doi.org/10.1007/s10725-018-0463-8