DOI QR코드

DOI QR Code

Shedding; towards a new paradigm of syndecan function in cancer

  • Choi, So-Joong (Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University) ;
  • Lee, Ha-Won (Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University) ;
  • Choi, Jung-Ran (Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University) ;
  • Oh, Eok-Soo (Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University)
  • Received : 2010.03.29
  • Published : 2010.05.31

Abstract

Syndecans, cell surface heparansulfate proteoglycans, have been proposed to act as cell surface receptors and/or coreceptors to play critical roles in multiple cellular functions. However, recent reports suggest that the function of syndecans can be further extended through shedding, a cleavage of extracellular domain. Shedding constitutes an additional level for controlling the function of syndecans, providing a means to attenuate and/or regulate amplitude and duration of syndecan signals by modulating the activity of syndecans as cell surface receptors. Whether these remaining cleavage products are still capable of functioning as cell surface receptors to efficiently transduce signals inside of cells is not clear. However, shedding transforms cell surface receptor syndecans into soluble forms, which, like growth factors, may act as novel ligands to induce cellular responses by association with other cell surface receptors. It is becoming interestingly evident that shed syndecans also contribute significantly to syndecan functions in cancer biology. This review presents current knowledge about syndecan shedding and its functional significance, particularly in the context of cancer.

Keywords

References

  1. Gee, J. M. and Knowlden, J. M. (2003) ADAM metalloproteases and EGFR signalling. Breast Cancer Res. 5, 223-224. https://doi.org/10.1186/bcr637
  2. Lee, D. C., Sunnarborg, S. W., Hinkle, C. L., Myers, T. J., Stevenson, M. Y., Russell, W. E., Castner, B. J., Gerhart, M. J., Paxton, R. J., Black, R. A., Chang, A. and Jackson, L. F. (2003) TACE/ADAM17 processing of EGFR ligands indicates a role as a physiological convertase. Ann. N. Y. Acad. Sci. 995, 22-38. https://doi.org/10.1111/j.1749-6632.2003.tb03207.x
  3. Kveiborg, M., Albrechtsen, R., Couchman, J. R. and Wewer, U. M. (2008) Cellular roles of ADAM12 in health and disease. Int. J. Biochem. Cell Biol. 40, 1685-1702. https://doi.org/10.1016/j.biocel.2008.01.025
  4. Hakozaki, A., Yoda, M., Tohmonda, T., Furukawa, M., Hikata, T., Uchikawa, S., Takaishi, H., Matsumoto, M., Chiba, K., Horiuchi, K. and Toyama, Y. (2010) Receptor Activator of NF-{kappa}B (RANK) Ligand Induces Ectodomain Shedding of RANK in Murine RAW264.7 Macrophages. J. Immunol. 184, 2442-2448. https://doi.org/10.4049/jimmunol.0901188
  5. Fan, H. and Derynck, R. (1999) Ectodomain shedding of TGF-alpha and other transmembrane proteins is induced by receptor tyrosine kinase activation and MAP kinase signaling cascades. EMBO J. 18, 6962-6972. https://doi.org/10.1093/emboj/18.24.6962
  6. Najy, A. J., Day, K. C. and Day, M. L. (2008) The ectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation. J. Biol. Chem. 283, 18393-18401. https://doi.org/10.1074/jbc.M801329200
  7. Raucci, A., Cugusi, S., Antonelli, A., Barabino, S. M., Monti, L., Bierhaus, A., Reiss, K., Saftig, P. and Bianchi, M. E. (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J. 22, 3716-3727. https://doi.org/10.1096/fj.08-109033
  8. Zhang, L., Bukulin, M., Kojro, E., Roth, A., Metz, V. V., Fahrenholz, F., Nawroth, P. P., Bierhaus, A. and Postina, R. (2008) Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. J. Biol. Chem. 283, 35507-35516. https://doi.org/10.1074/jbc.M806948200
  9. Zhang, L., Postina, R. and Wang, Y. (2009) Ectodomain shedding of the receptor for advanced glycation end products: a novel therapeutic target for Alzheimer's disease. Cell Mol. Life Sci. 66, 3923-3935. https://doi.org/10.1007/s00018-009-0121-4
  10. Kojro, E. and Postina, R. (2009) Regulated proteolysis of RAGE and AbetaPP as possible link between type 2 diabetes mellitus and Alzheimer's disease. J. Alzheimers Dis. 16, 865-878. https://doi.org/10.3233/JAD-2009-0998
  11. Chandler, A. B., Earhart, A. D., Speich, H. E., Kueter, T. J., Hansen, J., White, M. M. and Jennings, L. K. (2010) Regulation of CD40L (CD154) and CD62P (p-selectin) Surface Expression upon GPIIb-IIIa Blockade of Platelets from Stable Coronary Artery Disease Patients. Thromb. Res. 125, 44-52. https://doi.org/10.1016/j.thromres.2009.04.017
  12. Mannello, F., Tonti, G. A., Medda, V., Pederzoli, A. and Sauter, E. R. (2008) Increased shedding of soluble fragments of P-cadherin in nipple aspirate fluids from women with breast cancer. Cancer Sci. 99, 2160-2169. https://doi.org/10.1111/j.1349-7006.2008.00921.x
  13. Finger, E. C., Turley, R. S., Dong, M., How, T., Fields, T. A. and Blobe, G. C. (2008) TbetaRIII suppresses non-small cell lung cancer invasiveness and tumorigenicity. Carcinogenesis 29, 528-535. https://doi.org/10.1093/carcin/bgm289
  14. Gordon, K. J., Dong, M., Chislock, E. M., Fields, T. A. and Blobe, G. C. (2008) Loss of type III transforming growth factor beta receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression. Carcinogenesis 29, 252-262. https://doi.org/10.1093/carcin/bgm249
  15. Koenecke, C., Kumpers, P., Lukasz, A., Dammann, E., Verhagen, W., Gohring, G., Buchholz, S., Krauter, J., Eder, M., Schlegelberger, B. and Ganser, A. (2010) Shedding of the endothelial receptor tyrosine kinase Tie2 correlates with leukemic blast burden and outcome after allogeneic hematopoietic stem cell transplantation for AML. Ann. Hematol. 89, 459-467. https://doi.org/10.1007/s00277-009-0869-5
  16. Bien, E. and Balcerska, A. (2008) Serum soluble interleukin 2 receptor alpha in human cancer of adults and children: a review. Biomarkers 13, 1-26. https://doi.org/10.1080/13547500701674063
  17. Fears, C. Y., Gladson, C. L. and Woods, A. (2006) Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J. Biol. Chem. 281, 14533-14536. https://doi.org/10.1074/jbc.C600075200
  18. Lambaerts, K., Wilcox-Adelman, S. A. and Zimmermann, P. (2009) The signaling mechanisms of syndecan heparan sulfate proteoglycans. Curr. Opin. Cell Biol. 21, 662-669. https://doi.org/10.1016/j.ceb.2009.05.002
  19. Morgan, M. R., Humphries, M. J. and Bass M. D. (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat. Rev. Mol. Cell Biol. 8, 957-969. https://doi.org/10.1038/nrm2289
  20. Khotskaya, Y. B., Dai, Y., Ritchie, J. P., MacLeod, V., Yang, Y., Zinn, K. and Sanderson, R. D. (2009) Syndecan- 1 Is Required for Robust Growth, Vascularization, and Metastasis of Myeloma Tumors in vivo. J. Biol. Chem. 284, 26085-26095. https://doi.org/10.1074/jbc.M109.018473
  21. Maeda, T., Desouky, J. and Friedl, A. (2006) Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25, 1408-1412. https://doi.org/10.1038/sj.onc.1209168
  22. Shimada, K., Nakamura, M., De Velasco, M. A., Tanaka, M., Ouji, Y., Miyake, M., Fujimoto, K., Hirao, K. and Konishi, N. (2010) Role of syndecan-1 (CD138) in cell survival of human urothelial carcinoma. Cancer Sci. 101, 155-160. https://doi.org/10.1111/j.1349-7006.2009.01379.x
  23. Davies, E. J., Blackhall, F. H., Shanks, J. H., David, G., McGown, A. T., Swindell, R., Slade, R. J., Martin-Hirsch, P., Gallagher, J. T. and Jayson, G. C. (2004) Distribution and clinical significance of heparan sulfate proteoglycans in ovarian cancer. Clin. Cancer Res. 10, 5178-5186. https://doi.org/10.1158/1078-0432.CCR-03-0103
  24. Chen, D., Adenekan, B., Chen, L., Vaughan, E. D., Gerald, W., Feng, Z. and Knudsen, B. S. (2004) Syndecan-1 expression in locally invasive and metastatic prostate cancer. Urology 63, 402-407. https://doi.org/10.1016/j.urology.2003.08.036
  25. Levy, P., Munier, A., Baron-Delage, S., Di Gioia, Y., Gespach, C., Capeau, J. and Cherqui, G. (1996) Syndecan-1 alterations during the tumorigenic progression of human colonic Caco-2 cells induced by human Ha-ras or polyoma middle T oncogenes. Br. J. Cancer 74, 423-431. https://doi.org/10.1038/bjc.1996.376
  26. Oh, J. H., Kim, J. H., Ahn, H. J., Yoon, J. H., Yoo, S. C., Choi, D. S., Lee, I. S., Ryu, H. S. and Min, C. K. (2009) Syndecan-1 enhances the endometrial cancer invasion by modulating matrix metalloproteinase-9 expression through nuclear factor kappaB. Gynecol. Oncol. 114, 509-515. https://doi.org/10.1016/j.ygyno.2009.05.027
  27. Conejo, J. R., Kleeff, J., Koliopanos, A., Matsuda, K., Zhu, Z. W., Goecke, H., Bicheng, N., Zimmermann, A., Korc, M., Friess, H., and Buchler, M. W. (2000) Syndecan-1 expression is up-regulated in pancreatic but not in other gastrointestinal cancers. Int. J. Cancer 88, 12-20. https://doi.org/10.1002/1097-0215(20001001)88:1<12::AID-IJC3>3.0.CO;2-T
  28. Park, H., Kim, Y., Lim, Y., Han, I. and Oh, E. S. (2002) Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells. J. Biol. Chem. 277, 29730-29736. https://doi.org/10.1074/jbc.M202435200
  29. Popovic, A., Demirovic, A., Spajic, B., Stimac, G., Kruslin, B. and Tomas, D. (2010) Expression and prognostic role of syndecan-2 in prostate cancer. Prostate Cancer Prostatic. Dis. 13, 78-82. https://doi.org/10.1038/pcan.2009.43
  30. Woods, A. and Couchman, J. R. (2001) Syndecan-4 and focal adhesion function. Curr. Opin. Cell Biol. 13, 578-583. https://doi.org/10.1016/S0955-0674(00)00254-4
  31. Brule, S., Charnaux, N., Sutton, A., Ledoux, D., Chaigneau, T., Saffar, L. and Gattegno, L. (2006) The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9. Glycobiology 16, 488-501. https://doi.org/10.1093/glycob/cwj098
  32. Chen, P., Abacherli, L. E., Nadler, S. T., Wang, Y., Li, Q. and Parks, W. C. (2009) MMP7 shedding of syndecan-1 facilitates re-epithelialization by affecting alpha(2)beta(1) integrin activation. PLoS One 4, e6565. https://doi.org/10.1371/journal.pone.0006565
  33. Endo, K., Takino, T., Miyamori, H., Kinsen, H., Yoshizaki, T., Furukawa, M. and Sato, H. (2003) Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J. Biol. Chem. 278, 40764-40770. https://doi.org/10.1074/jbc.M306736200
  34. Asundi, V. K., Erdman, R., Stahl, R. C. and Carey, D. J. (2003) Matrix metalloproteinase-dependent shedding of syndecan-3, a transmembrane heparan sulfate proteoglycan, in Schwann cells. J. Neurosci. Res. 73, 593-602. https://doi.org/10.1002/jnr.10699
  35. Rodríguez-Manzaneque, J. C., Carpizo, D., Plaza-Calonge, Mdel. C., Torres-Collado, A. X., Thai, S. N., Simons, M., Horowitz, A. and Iruela-Arispe, M. L. (2009) Cleavage of syndecan-4 by ADAMTS1 provokes defects in adhesion. Int. J. Biochem. Cell. Biol. 41, 800-810. https://doi.org/10.1016/j.biocel.2008.08.014
  36. Fitzgerald, M. L., Wang, Z., Park, P. W., Murphy, G. and Bernfield, M. (2000) Shedding of Syndecan-1 and -4 Ectodomains Is Regulated by Multiple Signaling Pathways and Mediated by a Timp-3-Sensitive Metalloproteinase. J. Cell Biol. 148, 811-824. https://doi.org/10.1083/jcb.148.4.811
  37. Pruessmeyer, J., Martin, C., Hess, F. M., Schwarz, N., Schmidt, S., Kogel, T., Hoettecke, N., Schmidt, B., Sechi, A., Uhlig, S. and Ludwig, A. (2010) A disintegrin and metalloproteinase 17 (ADAM17) mediates inflammation- induced shedding of syndecan-1 and -4 by lung epithelial cells. J. Biol. Chem. 285, 555-564. https://doi.org/10.1074/jbc.M109.059394
  38. Spencer, J., Murphy, L. M., Conners, R., Sessions, R. B. and Gamblin, S. J. (2010) Crystal Structure of the LasA Virulence Factor from Pseudomonas aeruginosa: Substrate Specificity and Mechanism of M23 Metallopeptidases. J. Mol. Biol. 396, 908-923. https://doi.org/10.1016/j.jmb.2009.12.021
  39. Park, P. W., Pier, G. B., Preston, M. J., Goldberger, O., Fitzgerald, M. L. and Bernfield, M. (2000) Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J. Biol. Chem. 275, 3057-3064. https://doi.org/10.1074/jbc.275.5.3057
  40. Subramanian, S. V., Fitzgerald, M. L. and Bernfield, M. (1997) Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J. Biol. Chem. 272, 14713-14720. https://doi.org/10.1074/jbc.272.23.14713
  41. Ding, K., Lopez-Burks, M., Sanchez-Duran, J. A., Korc, M. and Lander, A. D. (2005) Growth factor-induced shedding of syndecan-1 confers glypican-1 dependence on mitogenic responses of cancer cells. J. Cell Biol. 171, 729-738. https://doi.org/10.1083/jcb.200508010
  42. Wang, F., Reierstad, S. and Fishman, D. A. (2006) Matrilysin over-expression in MCF-7 cells enhances cellular invasiveness and pro-gelatinase activation. Cancer Lett. 236, 292-301. https://doi.org/10.1016/j.canlet.2005.05.042
  43. Wang, J. B., Guan, J., Shen, J., Zhou, L., Zhang, Y. J., Si, Y. F., Yang, L., Jian, X. H. and Sheng, Y. (2009) Insulin increases shedding of syndecan-1 in the serum of patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 86, 83-88. https://doi.org/10.1016/j.diabres.2009.08.002
  44. Reizes, O., Goldberger, O., Smith, A. C., Xu, Z., Bernfield, M. and Bickel, P. E. (2006) Insulin promotes shedding of syndecan ectodomains from 3T3-L1 adipocytes: a proposed mechanism for stabilization of extracellular lipoprotein lipase. Biochemistry 45, 5703-5711. https://doi.org/10.1021/bi052263h
  45. Kliment, C. R., Englert, J. M., Gochuico, B. R., Yu, G., Kaminski, N., Rosas, I. and Oury, T. D. (2009) Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. J. Biol. Chem. 284, 3537-3545. https://doi.org/10.1074/jbc.M807001200
  46. Holen, I., Drury, N. L., Hargreaves, P. G. and Croucher, P. I. (2001) Evidence of a role for a non-matrix-type metalloproteinase activity in the shedding of syndecan-1 from human myeloma cells. Br. J. Haematol. 114, 414-421 https://doi.org/10.1046/j.1365-2141.2001.02963.x
  47. Maxhimer, J. B., Quiros, R. M., Stewart, R., Dowlatshahi, K., Gattuso, P., Fan, M., Prinz, R. A. and Xu, X. (2002) Heparanase-1 expression is associated with the metastatic potential of breast cancer. Surgery 132, 326-333. https://doi.org/10.1067/msy.2002.125719
  48. Purushothaman, A., Uyama, T., Kobayashi, F., Yamada, S., Sugahara, K., Rapraeger, A. C. and Sanderson, R. D. (2010) Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 115, 2449-2457. https://doi.org/10.1182/blood-2009-07-234757
  49. Su, G., Blaine, S. A., Qiao, D. and Friedl, A. (2008) Membrane type 1 matrix metalloproteinase-mediated stromal syndecan-1 shedding stimulates breast carcinoma cell proliferation. Cancer Res. 68, 9558-9565. https://doi.org/10.1158/0008-5472.CAN-08-1645
  50. Nikolova, V., Koo, C. Y., Ibrahim, S. A., Wang, Z., Spillmann, D., Dreier, R., Kelsch, R., Fischgräbe, J., Smollich, M., Rossi, L. H., Sibrowski, W., Wülfing, P., Kiesel, L., Yip, G. W. and Gotte, M. (2009) Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression. Carcinogenesis 30, 397-407. https://doi.org/10.1093/carcin/bgp001
  51. Yang, Y., Macleod, V., Miao, H. Q., Theus, A., Zhan, F., Shaughnessy, J. D., Jr, Sawyer, J., Li, J. P., Zcharia, E., Vlodavsky, I. and Sanderson, R. D. (2007) Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J. Biol. Chem. 282, 13326-13333. https://doi.org/10.1074/jbc.M611259200
  52. Beauvais, D. M., Ell, B. J., McWhorter, A. R. and Rapraeger, A. C. (2009) Syndecan-1 regulates alphavbeta3 and alphavbeta5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J. Exp. Med. 206, 691-705. https://doi.org/10.1084/jem.20081278
  53. Sanderson, R. D., Yang, Y., Kelly, T., MacLeod, V., Dai, Y. and Theus, A. (2005) Enzymatic remodeling of heparan sulfate proteoglycans within the tumor microenvironment: growth regulation and the prospect of new cancer therapies. J. Cell Biochem. 96, 897-905. https://doi.org/10.1002/jcb.20602
  54. Hayashida, K., Parks, W. C. and Park, P. W. (2009) Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines. Blood 114, 3033-3043. https://doi.org/10.1182/blood-2009-02-204966

Cited by

  1. Syndecan-1 and Syndecan-4 Are Independent Indicators in Breast Carcinoma vol.59, pp.6, 2011, https://doi.org/10.1369/0022155411405057
  2. Essential Roles for Soluble Virion-Associated Heparan Sulfonated Proteoglycans and Growth Factors in Human Papillomavirus Infections vol.8, pp.2, 2012, https://doi.org/10.1371/journal.ppat.1002519
  3. Interaction of human papillomavirus type 16 particles with heparan sulfate and syndecan-1 molecules in the keratinocyte extracellular matrix plays an active role in infection vol.96, pp.8, 2015, https://doi.org/10.1099/vir.0.000147
  4. Overexpression of sICAM-1 in the Alveolar Epithelial Space Results in an Exaggerated Inflammatory Response and Early Death in Gram Negative Pneumonia vol.12, pp.1, 2011, https://doi.org/10.1186/1465-9921-12-12
  5. Innate immune signaling induces expression and shedding of the heparan sulfate proteoglycan syndecan-4 in cardiac fibroblasts and myocytes, affecting inflammation in the pressure-overloaded heart vol.280, pp.10, 2013, https://doi.org/10.1111/febs.12161
  6. The heparanase/syndecan-1 axis in cancer: mechanisms and therapies vol.280, pp.10, 2013, https://doi.org/10.1111/febs.12168
  7. Targeting syndecans: a promising strategy for the treatment of cancer vol.17, pp.6, 2013, https://doi.org/10.1517/14728222.2013.773313
  8. Increased SNAIL expression and low syndecan levels are associated with high Gleason grade in prostate cancer vol.44, pp.3, 2014, https://doi.org/10.3892/ijo.2014.2254
  9. The heparanase/heparan sulfate proteoglycan axis: A potential new therapeutic target in sarcomas vol.382, pp.2, 2016, https://doi.org/10.1016/j.canlet.2016.09.004
  10. Chemotherapy stimulates syndecan-1 shedding: A potentially negative effect of treatment that may promote tumor relapse vol.35, 2014, https://doi.org/10.1016/j.matbio.2013.10.005
  11. Syndecan-1 regulates adipogenesis: new insights in dedifferentiated liposarcoma tumorigenesis vol.36, pp.1, 2015, https://doi.org/10.1093/carcin/bgu222
  12. Relationship between circulating syndecan-1 levels (CD138s) and serum free light chains in monoclonal gammopathies vol.34, pp.1, 2015, https://doi.org/10.1186/s13046-015-0155-4
  13. Potential signaling pathway involved in sphingosine-1-phosphate-induced epithelial-mesenchymal transition in cancer vol.12, pp.1, 2016, https://doi.org/10.3892/ol.2016.4661
  14. The transcriptional factor ZEB1 represses Syndecan 1 expression in prostate cancer vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29829-1