DOI QR코드

DOI QR Code

Inhibitory effect of glyceollin isolated from soybean against melanogenesis in B16 melanoma cells

  • Lee, Young-Sang (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Hyun-Kyoung (N&B Co., Ltd., Kyungpook National University) ;
  • Lee, Kyung-Ju (N&B Co., Ltd., Kyungpook National University) ;
  • Jeon, Hye-Won (N&B Co., Ltd., Kyungpook National University) ;
  • Cui, Song (N&B Co., Ltd., Kyungpook National University) ;
  • Lee, You-Mie (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Moon, Byung-Jo (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Yong-Hoon (N&B Co., Ltd., Kyungpook National University) ;
  • Lee, Young-Sup (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Received : 2010.03.02
  • Accepted : 2010.05.16
  • Published : 2010.07.31

Abstract

Natural products with non-toxic and environmentally friendly properties are good resources for skin-whitening cosmetic agents when compared to artificial synthetic chemicals. Here, we investigated the effect of glyceollin produced to induce disease resistance responses of soybean to specific races of an incompatible pathogen, phytophthora sojae, on melanogenesis and discussed their mechanisms in melanin biosynthesis. We found that glyceollin inhibits melanin synthesis and tyrosinase activity in B16 melanoma cells without cytotoxicity. To elucidate the mechanism of the effect of glyceollin on melanogenesis, we conducted western blot analysis for melanogenic enzymes such as tyrosinase, tyrosinase-related protein-1 (TRP-1), and TRP-2. Glyceollin inhibited tyrosinase and TRP-1 protein expression. Additionally, glyceollin effectively inhibited intracellular cAMP levels in B16 melanoma cells stimulated by $\alpha$-melanocyte stimulating hormone ($\alpha$-MSH). These results suggest that the whitening activity of glyceollin may be due to the inhibition of cAMP involved in the signal pathway of $\alpha$-MSH in B16 melanoma cells.

Keywords

References

  1. Seiberg, M., Paine, C., Sharlow, E., Andrade-Gordon, P., Costanzo, M., Eisinger, M. and Shapiro, S. S. (2000) Inhibition of melanisome transfer results in skin lightening. J. invest. Dermatol. 115, 162-167. https://doi.org/10.1046/j.1523-1747.2000.00035.x
  2. Hearing, V. J. (2005) Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. J. Dermatology Sci. 37, 3-14. https://doi.org/10.1016/j.jdermsci.2004.08.014
  3. Fitzpatrick, T. B. and Breathnach, A. S. (1963) The epidermal unit system. Dermatol. Wochenschr. 147, 481-489.
  4. del Marmol, V. and Beermann, F. (1996) Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 381, 165-168. https://doi.org/10.1016/0014-5793(96)00109-3
  5. Hearing, V. J. and Tsukamoto, K. (1991) Enzymatic control of pigmentation in mammals. FASEB J. 5, 2902-2909.
  6. Jackson, I. J., Chambers, D. M., Tsukamoto, K., Copeland, N. G., Gilbert, D. J., Jenkins, N. A. and Hearing, V. J. (1992) A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus. EMBO J. 11, 527-535.
  7. Kameyama, K., Takemura, T., Hamada, Y., Sakai, C., Kondoh, S., Nishiyama, S., Urabe, K. and Hearing, V. J. (1993) Pigment production in murine melanoma cells is regulated by tyrosinase, tyrosinase-related protein 1 (TRP1), DOPAchrome tautomerase (TRP2), and a melanogenic inhibitor. J. Invest. Dermatol. 100, 126-131. https://doi.org/10.1111/1523-1747.ep12462778
  8. Tsukamoto, K., Jackson, I. J., Urabe, K., Montague, P. M. and Hearing, V. J. (1992) A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J. 11, 519-526.
  9. Aroca, P., Solano, F., Salinas, C., Garcia-Borron, J. C. and Lozano, J. A. (1992) Regulation of the final phase of mammalian melanogenesis. The role of dopachrome tautomerase and the ratio between 5,6-dihydroxyindole-2-carboxylic acid and 5,6-dihydroxyindole. Eur. J. Biochem. 208, 155-163. https://doi.org/10.1111/j.1432-1033.1992.tb17169.x
  10. Korner, A. and Pawelek, J. (1982) Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science 217, 1163-1165. https://doi.org/10.1126/science.6810464
  11. Levy, C., Khaled, M. and Fisher, D. E., (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends. Mol. Med. 12, 406-414. https://doi.org/10.1016/j.molmed.2006.07.008
  12. Busca, R. and Ballotti, R. (2000) Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13, 60-69. https://doi.org/10.1034/j.1600-0749.2000.130203.x
  13. Tachibana, M. (2000) MITF: a stream flowing for pigment cells. Pigment Cell Res. 13, 230-240. https://doi.org/10.1034/j.1600-0749.2000.130404.x
  14. Zawa, V. P. and Mhaskar, S. T. (2004) Exogenous ochronosis following hydroquinine for melasma. J. Cosmet. Dermatol. 3, 234-236. https://doi.org/10.1111/j.1473-2130.2004.00089.x
  15. Roh, J. S., Han, J. Y., Kim, J. H. and Hwang, J. K. (2004) Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Boil. Pharm. Bull. 27, 1976-1978. https://doi.org/10.1248/bpb.27.1976
  16. Graham, T. L., Kim, J. E. and Graham, M. Y. (1990) Role of constitutive isoflavone conjugates in the accumulation of glyceollin in soybean infected with Phytophthora megasperma. Mol. Plant. Microbe. Interact. 3, 157-166. https://doi.org/10.1094/MPMI-3-157
  17. Graham, T. L. and Graham, M. Y. (1991) Glyceollin elicitors induce major but distinctly different shifts in isoflavonoid metabolism in proximal and distal soybean cell populations. Mol. Plant. Microbe. Interact. 4, 60-68. https://doi.org/10.1094/MPMI-4-060
  18. Daniel, O., Meier, M. S., Schlatter, J. and Frishknect, P. (1999) Selected phenolic compounds in cultivated plants: ecologic functions, health implications, and modulation by pesticides. Environ. Health Perspect 107, 109-114. https://doi.org/10.2307/3434477
  19. Bhattacharyya, M. K. and Ward, E. W. B. (1986) Resistance, susceptibility and accumulation of glyceollins I-III in soybean organs inoculated with Phytophthora megasperma f. sp. Glycinea. Physiol. and Mol. Pl. Pathol. 29, 227-237. https://doi.org/10.1016/S0048-4059(86)80023-6
  20. Payton-Stewart, F., Schoene, N. W., Kim, Y. S., Burow, M. E., Cleveland, T. E., Boue, S. M. and Wang, T. T. (2009) Molecular effects of soy phytoalexin glyceollins in human prostate cancer cells LNCaP. Mol. Carcinog. 48, 862-871. https://doi.org/10.1002/mc.20532
  21. Salvo, V. A., Boue, S. M, Fonseca, J. P., Elliott, S., Corbitt, C., Collins-Burow, B. M., Curiel, T. J., Srivastav, S. K., Shih, B. Y., Carter-Wientjes, C., Wood, C. E., Erhardt, P. W., Beckman, B. S., McLachlan, J. A., Cleveland, T. E. and Burow, M. E. (2006) Antiestrogenic glyceollins suppress human breast and ovarian carcinoma tumorigenesis.Clin. Cancer Res. 12, 7159-7164. https://doi.org/10.1158/1078-0432.CCR-06-1426
  22. Boue, S. M., Carter, C. H., Ehrlich, K. C. and Cleveland, T. E. (2000) Induction of the soybean phytoalexins coumestrol and glyceollin by Aspergillus. J. Agric. Food Chem. 48, 2167-2172. https://doi.org/10.1021/jf9912809
  23. Abdel-Malek, Z., Swope, V., Suzuki, I., Akcali, C., Harriger, M., Boyce, S., Urabe, K. and Hearing V. (1995) Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc. Natl. Acad. Sci. U.S.A. 92, 1789-1793. https://doi.org/10.1073/pnas.92.5.1789
  24. Martinez-Esparza, M., Jimenez-Cervantes, C., Beermann, F., Aparicio, P., Lozano, J. A. and Garcia-Borron, J. C. (1997) Transforming growth factor-beta1 inhibits basal melanogenesis in B16/F10 mouse melanoma cells by increasing the rate of degradation of tyrosinase and tyrosinase-related protein-1. J. Biol. Chem. 272, 3967-3972. https://doi.org/10.1074/jbc.272.7.3967
  25. Wakamatsu, K., Graham, A., Cook, D. and Thody, A. J. (1997) Characterisation of ACTH peptides in human skin and their activation of the melanocortin-1 receptor. Pigment Cell Res. 10, 288-297. https://doi.org/10.1111/j.1600-0749.1997.tb00688.x
  26. Cone, R. D., Lu, D., Koppula, S., Vage, D. I., Klungland, H., Boston, B., Chen, W., Orth, D. N., Pouton, C. and Kesterson, R. A. (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent. Prog. Horm. Res. 51, 287-317.
  27. Tamagawa, T., Niki, H. and Niki, A. (1985) Insulin release independent of a rise in cytosolic free Ca2+ by forskolin and phorbol ester. FEBS Lett. 183, 430-432. https://doi.org/10.1016/0014-5793(85)80824-3

Cited by

  1. Inhibition of melanogenesis by 5,7-dihydroxyflavone (chrysin) via blocking adenylyl cyclase activity vol.411, pp.1, 2011, https://doi.org/10.1016/j.bbrc.2011.06.108
  2. Natural Melanogenesis Inhibitors Acting Through the Down-Regulation of Tyrosinase Activity vol.5, pp.12, 2012, https://doi.org/10.3390/ma5091661
  3. Glyceollins, a novel class of soy phytoalexins, inhibit angiogenesis by blocking the VEGF and bFGF signaling pathways vol.57, pp.2, 2013, https://doi.org/10.1002/mnfr.201200489
  4. Glyceollins, a novel class of soybean phytoalexins, inhibit SCF-induced melanogenesis through attenuation of SCF/c-kit downstream signaling pathways vol.45, pp.4, 2013, https://doi.org/10.1038/emm.2013.20
  5. Glyceollin, a soybean phytoalexin with medicinal properties vol.90, pp.1, 2011, https://doi.org/10.1007/s00253-011-3169-7
  6. Glyceollins: Soybean phytoalexins that exhibit a wide range of health-promoting effects vol.34, 2017, https://doi.org/10.1016/j.jff.2017.04.020
  7. A Group of Novel HIF-1α Inhibitors, Glyceollins, Blocks HIF-1α Synthesis and Decreases Its Stability via Inhibition of the PI3K/AKT/mTOR Pathway and Hsp90 Binding vol.230, pp.4, 2015, https://doi.org/10.1002/jcp.24813
  8. Protocatechuic Acid from Pear Inhibits Melanogenesis in Melanoma Cells vol.18, pp.8, 2017, https://doi.org/10.3390/ijms18081809
  9. Anti-melanogenic effects of black, green, and white tea extracts on immortalized melanocytes vol.16, pp.2, 2015, https://doi.org/10.4142/jvs.2015.16.2.135
  10. Inhibitory effect of ectoine on melanogenesis in B16-F0 and A2058 melanoma cell lines vol.78, 2013, https://doi.org/10.1016/j.bej.2013.01.005
  11. The effects of Caffeoylserotonin on inhibition of melanogenesis through the downregulation of MITF via the reduction of intracellular cAMP and acceleration of ERK activation in B16 murine melanoma cells vol.45, pp.12, 2012, https://doi.org/10.5483/BMBRep.2012.45.12.039
  12. Acteoside inhibits melanogenesis in B16F10 cells through ERK activation and tyrosinase down-regulation vol.63, pp.10, 2011, https://doi.org/10.1111/j.2042-7158.2011.01335.x
  13. Kinetic study on the tyrosinase and melanin formation inhibitory activities of carthamus yellow isolated from Carthamus tinctorius L. vol.115, pp.3, 2013, https://doi.org/10.1016/j.jbiosc.2012.09.013
  14. Soyabean glyceollins: biological effects and relevance to human health vol.71, pp.01, 2012, https://doi.org/10.1017/S0029665111003272
  15. Cholesterol-Lowering Activity of Soy-Derived Glyceollins in the Golden Syrian Hamster Model vol.61, pp.24, 2013, https://doi.org/10.1021/jf400557p
  16. The inducible soybean glyceollin phytoalexins with multifunctional health-promoting properties vol.54, pp.1, 2013, https://doi.org/10.1016/j.foodres.2013.01.024
  17. Cycloalliin Inhibits Melanin Biosynthesis in B16 Mouse Melanoma Cells vol.24, pp.4, 2018, https://doi.org/10.3136/fstr.24.627
  18. In vitro inhibitory effect of sulfated galactans isolated from red alga Gracilaria fisheri on melanogenesis in B16F10 melanoma cells vol.30, pp.4, 2018, https://doi.org/10.1007/s10811-018-1469-3
  19. An Update on the Effects of Glyceollins on Human Health: Possible Anticancer Effects and Underlying Mechanisms vol.11, pp.1, 2019, https://doi.org/10.3390/nu11010079