DOI QR코드

DOI QR Code

Effects of Annealing Temperature and Atmosphere on Properties of Porous Silicon

열처리 온도 및 분위기에 따른 다공질 실리콘의 구조 및 광학적 특성

  • 최현영 (인제대학교 나노시스템공학과) ;
  • 임광국 (인제대학교 나노시스템공학과) ;
  • 전수민 (인제대학교 나노시스템공학과) ;
  • 조민영 (인제대학교 나노시스템공학과) ;
  • 김군식 (인제대학교 나노시스템공학과) ;
  • 김민수 (인제대학교 나노시스템공학과) ;
  • 이동율 (삼성LED(주)) ;
  • 김진수 (전북대학교 신소재공학부) ;
  • 김종수 (영남대학교 물리학과) ;
  • 임재영 (인제대학교 나노시스템공학과)
  • Received : 2010.04.07
  • Accepted : 2010.07.05
  • Published : 2010.08.01

Abstract

The porous Si (PS) was annealed at various temperature in air, argon, and nitrogen atmosphere. Structural and optical properties of the annealed PS were investigated by scanning electron microscopy (SEM) and photoluminescence (PL). It is found that the shape of pore is changed from circle to channel as increasing annealing temperature which was annealed in air and argon atmosphere. In case of PS annealed in nitrogen atmosphere, the shape of pore is changed from channel to circle with increase annealing temperature from 600 to $800^{\circ}C$. The PL peak position is blue-shifted with increasing annealing temperature. As annealing temperature increases, the PL intensity of the PS annealed in argon is decreased but that of the PS annealed in nitrogen is increased. It might be due to the formation of Si-N bonds and it passivates the non-radiative centers which is Si dangling bonds on the surface of the PS.

Keywords

References

  1. A. Uhlir, Bell Syst. Tech. J. 35, 333 (1956). https://doi.org/10.1002/j.1538-7305.1956.tb02385.x
  2. D. R. Turner, J. Electrochem. Soc. 105, 402 (1958). https://doi.org/10.1149/1.2428873
  3. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990). https://doi.org/10.1063/1.103561
  4. S. H. Jang, Y. D. Koh, J. H. Kim, J. H. Park, C. Y. Park, S. J. Kim, S. D. Cho, Y. C. Ko, and H. L. Sohn, Mater. Lett. 62, 552 (2008). https://doi.org/10.1016/j.matlet.2007.06.009
  5. G. Lammel, S. Schweizer, and Renaud, Sens. Actuators, A 92, 52 (2001). https://doi.org/10.1016/S0924-4247(01)00539-8
  6. B. Unal and S. Bayliss, J. Porous Mat. 7, 295 (2000). https://doi.org/10.1023/A:1009600619044
  7. S.-J. Kim, S.-H. Lee, and B.-G. Choi, J. KIEEME 15, 963 (2002).
  8. E. A. Petrova, K. N. Bogoslovskaya, L. A. Balagurov, and G. I. Kochoradze, Mater. Sci. Eng. B 9-70, 152 (2000).
  9. Y. Zhao, D. Yang, D. Li, and M. Jiang, Appl. Surf. Sci. 252, 1065 (2005). https://doi.org/10.1016/j.apsusc.2005.01.176
  10. Y. Zhao, D. Li, S. Xing, W. Sang, D. Yang, and M. Jiang, J. Lumin. 128, 317 (2008). https://doi.org/10.1016/j.jlumin.2007.04.015
  11. T. Nakamura, H. Omoya, K. Sasaki, N. Azuma, and H. Mimura, Appl. Surf. Sci. 113/114, 145 (1997). https://doi.org/10.1016/S0169-4332(96)00941-5
  12. Y. Zhao, D. Li, W. Sang, and D. Yang, Solid-State Electron. 50, 1529 (2006). https://doi.org/10.1016/j.sse.2006.08.013
  13. R. Herino, A. Perio, K. Barla, and G. Bomchil, Mater. Lett. 2, 519 (1984). https://doi.org/10.1016/0167-577X(84)90086-7
  14. K. H. Jung, S. Shih, and D. L. Kwong, J. Electrochem. Soc. 140, 3046 (1993). https://doi.org/10.1149/1.2220955