Expressed sequence tags analysis of immune-relevant genes in rock bream *Oplegnathus fasciatus* gill stimulated with LPS

Jeong-Ho Lee*, Ju-Won Kim, Gun-Wook Baeck and Chan-Il Park[†]

Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Korea

*Genetics and Breeding Research Center, National Fisheries Research and Development Institute, Geoje, 656-842, Korea

We constructed a rock bream (*Oplegnathus fasciatus*) gill cDNA library and a total of 1450 expressed sequence tag (EST) clones were generated. Gene annotation procedures and homology searches of the sequenced ESTs were locally done by BLASTX for amino acid similarity comparisons. Of the 1450 EST clones, 1022 EST clones showed significant homology to previously described genes while 428 ESTs were unidentified, and 259 clones were hypothetical, or unnamed proteins. Encoding 313 different sequences were identified as putative bio-defense genes or genes associated with immune response.

Key words Expressed sequence tags, LPS, Rock Bream Oplegnathus fasciatus, Gill

Rock bream, *Oplegnathus fasciatus*, belongs to the Oplegnathidae family and inhabits the coastal rocky-shores of Korea, Japan, Taiwan, and Hawaii (Nakabo, 2002). This species has attracted great interest among Korean fish farmers due to its high market value and consumer demand. The total production of this species, however, is not satisfactory compared to other commercially important fishes in Korea. The RSIV disease has been the major culprit for the mass mortality of rock bream in Korea (Sohn *et al.*, 2000; Jung and Oh, 2000).

Fish gills are complex and multi-functional tissues. The gill epithelium consists of several cell types including pavement cells, chloride cells, mucous cells,

†Corresponding Author : vinus96@hanmail.net TEL: 82-55-640-3103, FAX: 82-55-642-4509 and undifferentiated cells (Laurent, 1984). These cells cooperate to regulate homeostasis in the gills. Fish mucus secreted from the mucous cells covers and separates the gill epithelium from the external environment and is involved in various events including respiration, osmoregulation, and host defense against pathogenic microorganisms (Shephard, 1994).

Many molecular tools are available for characterizing the immune systems of mammals, especially human being and mice. With regard to fish, however, information on immune-related molecules is still limited. Recently, remarkable progress has been made in genetic technology with the discovery of rapid expressed sequence tag (EST) analysis, which allows the acquisition of massive DNA sequence information of many organisms, including several species of fish, in short time period (Zeng and Gong, 2002; Clark et al., 2003; Rise et al., 2004). Large scale EST analysis is also an efficient way for identification of genes and for analysis of their expression by means of expression profiling (Franco et al., 1995; Azam et al., 1996; Lee et al., 2000). It offers a rapid and valuable first look at genes expressed in specific tissue types, under specific physiological conditions or during specific developmental stages. Currently, the number of fish-related ESTs in public databases is still small compared to mammalian sequences and there are relatively few tissue-specific cDNA libraries (Ton et al., 2000). There has been an increasing public interest in this topic, but relatively little information is available about rock bream genes (Cho et al., 2000). The lack of information may be one obstacle to the effective use of genetics in aiding both rock bream aquaculture and conservation activities. In this study, EST sequenced to screen for bio-defense or immune related genes in rock bream gill after treatment with LPS.

Materials and methods

Animals

Rock bream *O. fasciatus*, with an average weight of 150 grams were obtained from the Genetics and Breeding Research Center (Geoje). Forty-eight rock bream were injected intra-peritoneally (IP) with LPS (6 mg/kg). The fish were maintained in a tank with running artificial seawater at 23-25 °C. At each sampling time (days 1, 3, 5, and 7), a total of six fish from each experimental group were sacrificed, gills were dissected out and quickly frozen in liquid nitrogen and stored at -80 °C.

cDNA library construction

The cDNA library was constructed using mRNA prepared from LPS stimulated gills tissue of rock bream. The purified mRNAs taken from four different time periods were pooled to ensure complete coverage of expressed genes in the allotted timeframe and were used to construct a cDNA library. Libraries were constructed by using a modification of Maruyama and Sugano (1994). The synthesis of the first-strand cDNA from the purified mRNA and cDNA amplification were performed as described by Maruyama and Sugano (1994). The amplified PCR products were then digested with SfiI, and cDNAs longer than 400 bp were ligated into DraIII-digested pCNS-D2 in an orientation-defined manner. The pCNS-D2 vector contains 5' EcoRI-DraIII-EcoRV-DraIII sites at multi cloning sites, which was achieved by modifying the pCNS vector (GenBank Accession no. AF416744). The ligated cDNA was then transformed into E. coli Top10F' (Invitrogen) by electroporation (Gene Pulser II, BioRad).

Single-pass sequencing of the 5'-termini of 1533 selected rock bream gill cDNA clones in plasmid form was performed using the ABI 3700 automatic DNA sequencer (PE Applied Biosystems) and the ABI prism Big Dye Terminator Cycle Sequencing Ready Reaction kit (PE Applied Biosystems).

EST sequencing and analysis

Bioinformatic analysis was conducted to determine gene identities using Genetyx ver. 8.0 software (SDC software, Japan). Briefly, vector sequences were then removed and database search were limited to ESTs >400 bp in length. The sequence of each cDNA was compared with sequences in the peptide sequence databases at the National Center for Biotechnology Information (NCBI) using the BLAST network service. Nucleotide sequence comparisons were carried out using the program BLASTX (Gish and David, 1993).

Results and Discussion

cDNA library construction

A cDNA library of 2×10^7 clones was constructed from the polyadenylated fraction of mRNA of rock

Table 1. Summary of sequences and clones represented

bream injected with LPS. The number of clones in the constructed cDNA library was deemed sufficient to cover the predominantly expressed mRNAs in rock bream gill stimulated with LPS.

A total of 1450 randomly selected clones were single-pass sequenced from the 5' end, resulting in the characterization of cDNA clones that were longer than 400 bp after elimination of vector sequence. The number of clones sequenced from the cDNA library and the average size of inserts are given in Table 1.

Numbers of ESTs (n)	1450
Putatively identified clones (n)	1022 (70%)
Hypothetical protein	208
Unnamed protein	51
Ribosomal protein	77
Immune related genes (n)	313
Other genes	373
Unidentified clones (n)	428 (30%)
Putatively identified different genes (n)	422
Total nucleotides (bp)	1,095,559
Average of sequenced length (bp)	756

EST sequencing and analysis

We performed single pass sequencing on 1450 randomly selected clones from a sea bass cDNA library targeting the 5'-terminus of each insert.

Of the 1450 clones, 1022 (70%) were identified as orthologs of known genes from rock bream or other organisms. We performed a BLASTX search on all the sequences. 428 (30%) of the 1450 sequences resulted to unidentified, i.e., did not show any significant similarity to the sequences present in the public databases based on nucleotides or translated peptides.

Among the 1022 identified EST clones, 313 clones were immune related genes identified as homologous to the previously reported genes from rock bream or other organisms. 373 different rock bream genes were identified including the 77 genes for ribosomal proteins that we have obtained (Table 1).

Gene annotation procedures and homology searches of the sequenced ESTs have been locally done by BLASTX for amino acid similarity comparisons. The ESTs with significant similarities to known proteins were evaluated to determine if these remarkable similarities were caused by simple amino acid matches (Table 2).

Table 2. Rock bream LPS stimulated gill ESTs encoding for immune related genes.

Clone no.	Accession no.	Putative identification	Closest species	Accession no.	E-value	Ia	bp	Fb
06-E05	AB595025	Serotonin receptor 1F	Monodelphis domestica	XP_001379957.1	2.00E-50	49	901	1
07-B10	AB595034	Serotonin receptor 2B	Tetraodon fluviatilis	Q8UUG8.1	1.00E-94	81	906	1
01-H02	AB594989	Alkylated DNA repair protein alkB homolog 7	Salmo sala	NP_001133859.1	3.00E-55	81	879	1
09-G11	AB595066	Apolipoprotein C-I	Salmo salar	NP_001134834.1	3.00E-08	71	482	1
14-E10	AB595122	apolipoprotein E	Oplegnathus fasciatus	ACF21982.1	1.00E-20	94	938	16
08-B08	AB595052	Apolipoprotein O	precursor Salmo salar	ACI68171.1	2.00E-54	59	856	1
06-E04	AB595024	Apoptosis facilitator Bcl-2-like protein 14	Danio rerio	XP_001332133.1	2.00E-09	44	887	1
03-A04	AB594993	Apoptosis-associated speck-like protein containing a CARD	Siniperca chuatsi	ABR24505.1	3.00E-46	67	897	1
06-G01	AB595028	B-cell linker protein	Salmo salar	ACN10516.1	4.00E-65	60	929	1
14-H12	AB595127	beta-2 microglobulin	Stizostedion vitreum	AAW65850.1	3.00E-39	84	936	17
14-E09	AB595121	calcium homeostasis endoplasmic reticulum protein	Taeniopygia guttata	XP_002197407.1	6.00E-67	78	821	1
10-A09	AB595071	Casitas B-lineage lymphoma, isoform CRA_a	Mus musculus	EDL25568.1	3.00E-63	57	791	1
14-A03	AB595114	caspase 10	Paralichthys olivaceus	BAE98149.1	3.00E-76	70	804	1
01-F12	AB594987	Cathepsin H precursor	Salmo salar	ACI66895.1	1.00E-07	74	912	1
05-F04	AB595015	cathepsin L-like protein	Lutjanus argentimaculatus	ACO82386.1	1.00E-129	100	903	1
10-E06	AB595079	Cathepsin O	Salmo salar	NP_001134063.1	1.00E-88	75	840	1
09-F11	AB595065	cathepsin S s	Lutjanus argentimaculatu	ACO82388.1	1.00E-108	91	774	1
06-G04	AB595030	CC chemokine ligand 4	Dicentrarchus labrax	CAM32187.1	1.00E-29	74	979	1

Table	2	(Continued)
-------	---	-------------

	<i>c</i> on <i>c</i> on <i>c</i> on <i>c</i> of <i>c</i>							
Clone no.	Accession no.	Putative identification	Closest species	Accession no.	E-value	Ia	bp	F ^b
05-F05	AB595016	C-C chemokine receptor family-like	Danio rerio	XP_001346655.1	3.00E-32	65	912	1
08-A07	AB595050	C-C motif chemokine 20 precursor	Salmo salar	ACI66945.1	6.00E-12	76	770	1
02-E08	AB594992	CCAAT/enhancer binding protein delta2	Oncorhynchus mykiss	ABD84408.1	2.00E-57	62	866	1
06-E10	AB595026	CCAAT/enhancer-binding protein beta 2	Epinephelus coioides	ACL98106.1	2.00E-46	97	817	1
14-C08	AB595116	CD9 antigen	Anoplopoma fimbria	ACQ58340.1	0.002	86	968	3
13-H08	AB595112	collagen, type VI, alpha 1	Danio rerio	XP_698253.2	4.00E-14	66	926	1
07-B01	AB595033	collagen, type VI, alpha 2 Danic rerio	Danio rerio	XP_696164.2	2.00E-94	58	873	1
01-D09	AB594983	Complement C1q subcomponent subunit C precursor	salmo salar	ACN11312.1	4.00E-48	47	685	1
13-A05	AB595101	C-type lectin 13	Perca flavescens	ACO82046.1	3.00E-35	62	710	10
14-H05	AB595124	C-type lectin 3	Perca flavescens	ACO82036.1	2.00E-34	60	717	5
06-G08	AB595031	C-type lectin 6	Perca flavescens	ACO82039.1	1.00E-27	65	396	2
06-B07	AB595021	cytochrome b	Oplegnathus fasciatus	YP_001974630.1	1.00E-139	86	909	4
12-D05	AB595093	cytochrome c oxidase I	Micropterus dolomieu	YP_002274334.1	2.00E-69	88	575	2
12-F10	AB595098	cytochrome c oxidase subunit I	Oplegnathus fasciatus	YP_001974620.1	2.00E-96	71	839	10
05-D11	AB595011	cytochrome c oxidase subunit II	Oplegnathus fasciatus	YP_001974621.1	1.00E-100	88	699	5
05-F10	AB595017	cytochrome c oxidase subunit III	Oplegnathus fasciatus	YP_001974624.1	1.00E-112	86	785	4
12-D11	AB595094	cytochrome c oxidase subunit VIa polypeptide 1	Danio rerio	CAP19431.1	9.00E-35	94	587	1
03-A11	AB594995	Cytochrome c oxidase subunit VIb isoform 1	Osmerus mordax	ACO10158.1	2.00E-44	100	530	1
12-C05	AB595090	Endothelial differentiation-related factor 1 homolog	Salmo salar	ACI67525.1	3.00E-71	90	893	1
10-B05	AB595073	ferredoxin-fold anticodon binding domain containing 1	Danio rerio	NP_001093489.1	7.00E-26	56	579	1
14-A05	AB595115	Ferritin, middle subunit	Anoplopoma fimbria	ACQ57875.1	6.00E-91	97	737	6
13-F10	AB595108	Fish-egg lectin	Salmo salar	ACN10420.1	6.00E-60	60	872	7
08-F01	AB595056	GATA-binding factor 3	Salmo salar	NP_001133239.1	2.00E-31	76	344	1
04-E09	AB595004	heat shock cognate 70	Rhabdosargus sarba	AAR97293.1	3.00E-25	94	607	1
07-C01	AB595035	heat shock cognate 71	Paralichthys olivaceus	ABG56391.1	5.00E-12	97	491	1
14-D07	AB595119	heat shock protein 90 beta	Pagrus major	AAP20179.1	8.00E-70	78	873	3

Table	2	(Continued)

14010 2 (continued)							
Clone no.	Accession no.	Putative identification	Closest species	Accession no.	E-value	Ia	bp	Fb
12-H12	AB595100	Hemoglobin subunit alpha-A	Seriola quinqueradiata	Q9PVM4.3	1.00E-67	94	577	2
10-A02	AB595070	Hemoglobin subunit alpha-B	Seriola quinqueradiata	Q9PVM3.3	2.00E-60	86	568	1
06-A07	AB595020	Hemoglobin subunit beta-A	Seriola quinqueradiata	Q9PVM2.2	1.00E-70	93	928	1
01-E11	AB594985	heparin-binding EGF-like growth factor	¹ Danio rerio	NP_001104696.1	4.00E-24	39	785	1
11 - B06	AB595083	HSP-90	Dicentrarchus labrax	AAQ95586.1	1.00E-123	90	774	1
07-E04	AB595041	IgGFc-binding protein precursor	Monodelphis domestica	XP_001369345.1	1.00E-32	65	854	1
09-C01	AB595062	immunoglobulin heavy chain	Siniperca chuatsi	AAQ14863.1	4.00E-58	94	514	1
07-H03	AB595047	Immunoglobulin lambda-like polypeptide 1 precursor	Anoplopoma fimbria	ACQ58137.1	9.00E-66	68	820	1
01-A08	AB594979	immunoglobulin light chain	Dicentrarchus labrax	CAC16852.1	1.00E-11	97	714	4
06-A06	AB595019	inhibitor kappa B alpha	Paralichthys olivaceus	ABO38854.1	1.00E-125	86	938	1
10-B12	AB595074	inhibitor of nuclear factor kappa B kinase beta subunit	^a Danio rerio	NP_001116737.1	8.00E-74	77	805	1
11 - H01	AB595088	interferon stimulated gene 15	Sebastes schlegelii	BAG72218.1	5.00E-51	82	768	1
01-E01	AB594984	IRF1	Siniperca chuatsi	AAV65042.1	7.00E-10	91	839	1
03-B02	AB594996	keratin 13	Oncorhynchus mykiss	NP_001117848.1	1.00E-78	75	886	1
06-G02	AB595029	keratin 15	Epinephelus coioides	ACL98116.1	1.00E-74	98	867	2
12-E05	AB595046	keratin 8	Danio rerio	XP_696736.2	3.00E-71	63	775	1
07-G09	AB595095	keratin 8	Oreochromis mossambicus	AAP22041.1	3.00E-07	96	936	1
14-C10	AB595117	keratin type I	Acipenser baerii	CAD38121.1	3.00E-40	64	892	1
07-E07	AB595043	Keratin, type I cytoskeletal 13	Anoplopoma fimbria	ACQ58237.1	1.00E-135	90	916	2
10-E10	AB595080	LDH-A	Chromis punctipinnis	AAP44526.1	1.00E-83	98	847	1
09-H09	AB595069	leukolectin protein	Salmo salar	NP_001152845.1	7.00E-08	54	370	1
01-B09	AB594982	lily-type lectin	Platycephalus indicus	BAE79274.1	4.00E-47	85	524	4
06-D05	AB595023	Lipopolysaccharide-induced tumor necrosis factor-alpha factor homolog	t Anoplopoma fimbria	ACQ58646.1	2.00E-44	92	927	2
13-H05	AB595111	lymphocyte cytosolic protein 1 precursor	Oncorhynchus mykiss	CAM82803.1	1.00E-158	97	875	1
13-E08	AB595106	lysozyme	Anopheles darlingi	AAB61345.1	2.00E-04	48	907	1
03-H12	AB594998	macrophage myristoylated alanine-rich C kinase substrate	Scophthalmus maximus	ABJ98697.1	7.00E-09	62	934	1

Table 2 (C	ontinued)
------------	-----------

14010 2 (continued)							
Clone no.	Accession no.	Putative identification	Closest species	Accession no.	E-value	Ia	bp	F ^b
11-G12	AB595087	major histocompatibility class I receptor	Stizostedion vitreum	AAL11412.1	3.00E-66	75	868	3
05-D12	AB595012	major histocompatibility complex II gamma chains	Sparus aurata	CAP47207.1	5.00E-75	84	864	5
09-H07	AB595068	MHC class I alpha antigen	Epinephelus akaara	ABX80523.1	1.00E-103	80	848	1
09-H04	AB595067	MHC class II antigen alpha chain	Larimichthys crocea	ABV48906.1	3.00E-10	68	847	5
08-H05	AB595058	MHC class II antigen beta chain	Larimichthys crocea	ABV48908.1	1.00E-72	80	860	5
07-D01	AB595038	MHC class II antigen-associated invariant chain	Lutjanus argentimaculatus	ACO82381.1	1.00E-07	88	835	1
06-F05	AB595027	MHC class II protein	Morone saxatilis	AAA49378.1	1.00E-100	83	964	1
01-B07	AB594981	MHC II invariant chain	Siniperca chuatsi	AAS77256.1	1.00E-52	92	899	5
04-D08	AB595002	Mitogen-activated protein kinase organizer 1	Salmo salar	NP_001134557.1	1.00E-121	97	893	1
07-G07	AB595045	Myeloid leukemia factor 2	Salmo salar	CAF90637.1	3.00E-68	65	831	1
04-G10	AB595006	myeloperoxidase	Siniperca chuatsi	ABC72122.1	1.00E-121	67	921	1
14-C12	AB595118	NAD(P)H dehydrogenase, quinone 1	Danio rerio	NP_991105.1	6.00E-49	81	591	1
13-C06	AB595103	NADH dehydrogenase 1 alpha subcomplex subunit 13	Salmo salar	ACI69466.1	8.00E-59	84	581	1
04-C10	AB595001	NADH dehydrogenase 1 alpha subcomplex subunit 4-like 2	Osmerus mordax	ACO10104.1	3.00E-37	81	804	1
01-A06	AB594978	NADH dehydrogenase subunit 1	Oplegnathus fasciatus	YP_001974618.1	1.00E-128	86	959	4
06-G12	AB595032	NADH dehydrogenase subunit 2	Oplegnathus fasciatus	YP_001974619.1	4.00E-81	64	911	3
14-D11	AB595120	NADH dehydrogenase subunit 6	Oplegnathus fasciatus	YP_001974629.1	1.00E-54	77	805	5
11-C07	AB595084	Nattectin precursor	Salmo salar	ACI67625.1	9.00E-16	68	450	1
14-H08	AB595125	Nattectin; Flags: Precursor	Thalassophryne nattereri	Q66S03.1	2.00E-34	59	732	21
01-G11	AB594988	Perforin-1 precursor	Salmo salar	ACI33854.1	8.00E-47	41	860	1
05-F01	AB595014	Peroxiredoxin-1	Anoplopoma fimbria	ACQ58049.1	1.00E-107	96	893	1
13-C08	AB595092	Peroxiredoxin-6	Salmo salar	ACI67008.1	2.00E-58	80	716	1
12-D04	AB595104	Peroxiredoxin-6	Salmo salar	ACI67571.1	1.00E-107	93	808	1
11 - G07	AB595086	polycomb group ring finger 6	Danio rerio	NP_001082838.1	3.00E-34	88	638	1
04-B10	AB595000	polyubiquitin	Cricetulus griseus	BAA23488.1	1.00E-134	95	822	1
13-A10	AB595102	prostate stem cell antigen precursor-like	Ictalurus punctatus	ABD85498.1	9.00E-18	52	847	2

Table 2 (C	ontinued)
------------	-----------

	e entimatea)							
Clone no.	Accession no.	Putative identification	Closest species	Accession no.	E-value	Ia	bp	F ^b
10-D12	AB595078	Proteasome activator complex subunit 1	Oncorhynchus mykiss	ACO08129.1	6.00E-94	81	715	1
02-C10	AB594991	proteasome alpha 1 subunit	Monodelphis domestica	XP_001379009.1	1.00E-137	96	884	1
11-G04	AB595085	Proteasome subunit beta type-4 precursor	Anoplopoma fimbria	ACQ58421.1	7.00E-30	100	703	1
08-D09	AB595054	RAB5A, member RAS oncogene family like	Danio rerio	NP_957264.1	1.00E-105	94	906	1
10-B01	AB595072	Ras association (RalGDS/AF-6) domain family (N-terminal) member 8	Danio rerio	XP_001921350.1	8.00E-32	49	614	1
10-C05	AB595075	ras-related C3 botulinum toxin substrate 2	Pagrus major	AAP20195.1	2.00E-72	98	807	1
10-H10	AB595082	Ras-related protein Rap-1b precursor	Anoplopoma fimbria	ACQ58088.1	2.00E-69	95	876	1
04-F09	AB595005	receptor activity modifying protein 2a	Takifugu obscurus	BAE45306.1	8.00E-63	71	866	1
13-D11	AB595105	receptor for activated protein kinase C s	Oreochromis mossambicu	AAQ91574.1	1.00E-162	97	938	1
10-G01	AB595081	Regulator of G-protein signaling 9-binding protein	Danio rerio	Q504F3.1	4.00E-50	67	800	1
12-E10	AB595097	Renin receptor	Salmo salar	NP_001133563.1	1.00E-105	83	766	1
05-C05	AB595009	ReO_6	Oryzias latipes	BAB83841.1	1.00E-10	58	936	2
14-H10	AB595126	Retinoblastoma-binding protein 6	Salmo salar	ACM08487.1	1.00E-20	100	789	1
08-D01	AB595053	retinol binding protein 7, cellular	Mus musculus	NP_071303.1	3.00E-40	58	888	1
10-C08	AB595076	rhamnose-binding lectin	Channa argus	ACD76075.1	0.084	86	797	1
05-A09	AB595007	Serine protease 27	Salmo salar	NP_001139871.1	2.00E-81	67	861	1
02-A10	AB594990	Serine protease 27 precursor	Esox lucius	ACO14162.1	5.00E-76	67	916	1
03-A06	AB594994	Serine/threonine-protein kinase 17A	Salmo salar	ACI34195.1	1.00E-09	83	862	1
05-E06	AB595013	stress protein HSC70-1	Seriola quinqueradiata	BAG82848.1	1.00E-131	86	866	1
12-B05	AB595089	suppressor of cytokine signaling 3a	Tetraodon nigroviridis	ABC60040.1	6.00E-97	91	852	1
12-H07	AB595099	T-cell receptor beta, type 2	Paralichthys olivaceus	BAB82593.1	1.00E-18	60	735	1
07-C06	AB595037	TGF-beta-inducible nuclear protein 1	Anoplopoma fimbria	ACQ58100.1	1.00E-122	92	842	1
09-F08	AB595064	Thioredoxin	Anoplopoma fimbria	ACQ58191.1	1.00E-38	82	689	1

14010 2 (commuta							
Clone no.	Accession no.	Putative identification	Closest species	Accession no.	E-value	Ia	bp	F ^b
01-E12	AB594986	Thymosin beta-12	Lateolabrax japonicus	P33248.2	6.00E-14	100	813	3
13-H01	AB595110	Thymosin beta-a	Esox lucius	ACO13749.1	2.00E-06	59	624	4
07-G01	AB595044	TNF-related apoptosis inducing ligand	Siniperca chuatsi	AAX77404.1	1.00E-38	96	904	1
05-C02	AB595008	translationally-controlled tumor protein	Oryzias latipes	ACO82289.1	7.00E-64	84	886	2
08-E12	AB595055	transmembrane 7 superfamily member 1	Danio rerio	XP_001341229.1	7.00E-86	70	940	1
12-C07	AB595091	Transmembrane protein 128	Salmo salar	NP_001134319.1	6.00E-67	73	802	1
08-F08	AB595057	transmembrane protein 33	Danio rerio	NP_998828.1	1.00E-126	94	936	1
13-H11	AB595113	Transmembrane protein 59 precursor	Salmo salar	ACI33199.1	1.00E-107	73	962	1
01-B03	AB594980	Tubulin alpha-1 chain	Osmerus mordax	ACO09494.1	2.00E-53	99	463	1
12-E06	AB595096	tubulin, alpha 8 like 2	Salmo salar	NP_001133158.1	1.00E-143	98	789	1
04-E03	AB595003	Tumor necrosis factor receptor superfamily member 14 precursor	Osmerus mordax	ACO08877.1	1.00E-55	61	893	3
07-E06	AB595042	type I cytokeratin	Danio rerio	CAK11298.1	2.00E-83	58	898	2
07-D04	AB595039	type I keratin-like protein	Sparus aurata	ACN62548.1	1.00E-120	95	916	2
14-F04	AB595123	type II keratin	Solea senegalensis	BAH56637.1	4.00E-84	97	824	8
08-H08	AB595059	type II keratin E3-like protein	Sparus aurata	AAT44423.1	3.00E-54	98	356	1
04-A04	AB594999	ubiquinol-cytochrome c reductase core I protein	Oncorhynchus mykiss	AF465782_1	1.00E-136	85	870	1
05-C10	AB595010	ubiquitin (ribosomal protein L40)	Schistosoma mansoni	CAZ32225.1	1.00E-151	100	838	2
09-A10	AB595060	ubiquitin	Hydra magnipapillata	XP_002158040.1	3.00E-06	53	774	1
06-C03	AB595022	Ubiquitin	Salmo salar	ACM09817.1	1.00E-130	98	858	1
09-E12	AB595063	Ubiquitin carboxyl-terminal hydrolase 12	Salmo salar	NP_001133405.1	1.00E-158	98	866	1
06-A04	AB595018	Ubiquitin-conjugating enzyme E2 N	Salmo salar	ACM08830.1	0.012	86	535	1
08-A09	AB595051	Ubiquitin-conjugating enzyme E2 variant 3	Salmo salar	NP_001133767.1	1.00E-137	80	938	1
07-H09	AB595048	N-acetylgalactosaminyltransferas e 5 (GalNAc-T5)	Danio rerio	XP_001338929.2	1.00E-47	64	894	1
13-G12	AB595109	vertebrate granzyme family	Danio rerio	NP_001108166.1	6.00E-24	72	620	1

Table 2 (Continued)

Clone no.	Accession no.	Putative identification	Closest species	Accession no.	E-value	Ia	bp	Fb
10-D04	AB595077	vertebrate tumour differentially expressed protein family	Danio rerio	CAK04623.1	4.00E-53	72	601	1
03-C08	AB594997	virus-induced protein 5	Siniperca chuatsi	AAV65043.1	1.00E-65	83	823	2
07-E02	AB595040	zinc finger protein	Danio rerio	CAQ14162.1	7.00E-22	36	908	1
09-B02	AB595061	Zinc finger protein Gfi-1b	Salmo salar	NP_001133599.1	5.00E-13	42	947	1
07-C04	AB595036	Zinc transporter 4	Salmo salar	NP_001133377.1	5.00E-46	79	731	1
13-F01	AB595107	Zinc transporter SLC39A11	Salmo salar	ACN11096.1	7.00E-43	87	915	1
08-A05	AB595049	Zymogen granule membrane protein 16 precursor	Salmo salar	ACM08996.1	9.00E-30	65	880	3

Table 2 (Continued)

^a Identity (%).

^b Frequency (time).

The most redundant clones (Table 2) were found in those coding for nattectin. Nattectin induced a significant cellular recruitment into peritoneal cavity of mice, mainly by influx of neutrophils, followed by macrophages, with synthesis of PGE, LTB, IL-1b, IL-6, KC, MCP-1, IL-10, and IL-12 (Tânia *et al.*, 2009).

The second most redundant clones (Table 2) were seen in those coding for beta-2 microglobulin. Beta-2 microglobulin regulates NK cell function by direct contact with NK cell inhibitory receptors (Michaelsson *et al.*, 2001). A role in the anti-tumor immune response (Mori *et al.*, 1999) and viral resistance (Klingel *et al.*, 2003) has also been suggested.

We have sequenced clones for the several types of lectins. The C-type lectin superfamily is comprised of proteins functionally important in glycoprotein metabolism, mechanisms of multi-cellular integration, and immunity (Zelensky and Gready, 2004). Fish mucus contains a variety of antimicrobial substances, such as lysozyme, proteolytic enzyme, lectin, C-reactive protein and bactericidal peptides (Hjelmeland *et al.*, 1983; Cole *et al.*, 2000; Honda *et al.*, 2000). Because water is an ideal medium for the transmission of bacteria and parasitic microbes, fish are constantly exposed to pathogens via the skin, gills, and alimentary canal. It is generally believed that defense mechanisms against pathogens exist in the gills, and that the gill serves as a mechanical, as well as biochemical, barrier. Indeed, there is evidence that lectins can be found in gill tissue (Mistry *et al.*, 2001; Russell and Lumsden, 2005).

The discovery of novel teleost genes related to the immune response has been accelerated by highthroughput sequencing techniques combined with searches for homologous sequences in public databases. The sequencing of ESTs is especially useful since it simultaneously allows novel gene discovery and gene expression analysis. It also indicates that the range of rock bream gill ESTs identified in this study covers the known gill functions and therefore should be useful to monitor gill gene expression under different physiological conditions.

In conclusion, this study reports an expressed sequence tag (EST) based gene identification analyzes the gene identification of 1450 ESTs derived from rock bream gill cDNA library. These EST analyses will be useful for the construction of cDNA microarray and recombinant proteins. The application of cDNA microarrays may facilitate research attempting to answer questions concerning immune responses and other protective responses of rock bream upon infection of pathogens.

Acknowledgment

This research was supported by National Fisheries Research and Development Institute (RP-2010-BT-015) grant.

References

- Azam, A., J. Paul, D. Sehgal, J. Prasad. S. Bhattacharya and A. Bhattacharya. Identification of novel genes from *Entamoeba histolytica* by expressed sequence tag analysis. Gene, 181: 113-116. 1996.
- Cho, Y.S., B.N. Choi, K.H. Kim, S.K. Kim, D.S. Kim, I.C. Bang and Y.K. Nam. Differential expression of Cu/Zn superoxide dismutase mRNA during exposures to heavy metals in rockbream (*Oplegnathus fasciatus*). Aquaculture, 253: 667-679. 2006.
- Clark, M.S., Y.J. Edwards, D. Peterson, S.W. Clifton, A.J. Thompson, M. Sasaki, Y. Suzuki, K. Kikuchi,

S. Watabe, K. Kawakami, S. Sugano, G. Elgar and S.L. Johnson. Fugu ESTs: new resources for transcription analysis and genome annotation. Genome Res., 13:2747-2753. 2003.

- Cole, A.M., R.O. Darouiche, D. Legarda, N. Connell, G. Diamond. Characterization of a fish antimicrobial peptide: gene expression, subcellular localization, and spectrum of activity. Antimicrob. Agents Chemother., 44: 2039-2045. 2000.
- Franco, G.R., M.D. Adams, S.M. Bento, A.J.G. Simpson, J.C. Venter and S.D.J. Pena. Identification of new *Schistosoma mansonigenes* by the EST strategy using a directional cDNA library. Gene, 152: 141-147. 1995.
- Gish, W and J.S. David. Identification of protein coding regions by database similarity search. Nature Genetics, 3: 266-272. 1993.
- Hjelmeland, K., M. Christie and J. Raa. Skin mucus protease from rainbow trout, *Salmo gairdneri* Richardson, and its biological significance. J. Fish Biol., 23: 13-22. 1983.
- Honda, S., M. Kashiwagi, K. Miyamoto, Y. Takei and S. Hirose. Multiplicity, structures, and endocrine and exocrine natures of eel fucose-binding lectins. J. Biol. Chem., 275: 33151-33157. 2000.
- Jung S.J. and M.J. Oh. Iridovirus-like infection associated with high mortalities of striped beakperch, *Oplegnathus fasciatus* (Temminck et Schlegel) in southern coastal areas of the Korean peninsula. J. Fish Dis., 23: 223-226. 2000.
- Klingel, K., J.J. Schnorr, M. Sauter, G. Szalay and R. Kandolf. β2-microglobulin associated regulation of interferon-gamma and virus-specific immunoglobulin

G confer resistance against the development of chronic coxsackievirus myocarditis. Am. J. Pathol. 162: 1709-1720. 2003.

- Lee, C.K., R. Weindruch and T.A. Prolla. Gene-expression profile of the aging skin in mice. Nat. Genet., 25: 294-297. 2000.
- Maruyama, K. and S. Sugano. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene, 138: 171-174. 1994.
- Michaelsson, J., A. Achour, A. Rolle and K. Karre. MHC class I recognition by NK receptors in the Ly49 family is strongly influenced by the beta 2-microglobulin subunit. J. Immunol. 166: 7327-7334. 2001.
- Mistry, A.C., S. Honda and S. Hirose. Structure, properties and enhanced expression of galactose-binding C-type lectins in mucous cells of gills from freshwater Japanese eels (*Anguilla japonica*). Biochemistry, 360: 107-115. 2001.
- Mori, M., Y. Terui, M. Ikeda, H. Tomizuka, M. Uwai and T Kasahara. Beta(2)-microglobulin identified as an apoptosis-inducing factor and its characterization. Blood, 94: 2744-2753. 1999.
- Rise, M.L., K.R. von Schalburg, G.D. Brown, M.A. Mawer,
 R.H. Devlin, N. Kuipers, M. Busby, M.
 Beetz-Sargent, R. Alberto, A.R. Gibbs, P. Hunt,
 R. Shukin, J.A. Zeznik, C. Nelson, S.R. Jones,
 D.E. Smailus, S.J. Jones, J.E. Schein, M.A. Marra,
 Y.S. Butterfield, J.M. Stott, S.H. Ng, W.S. Davidson
 and B.F. Koop. Development and application of
 a salmonid EST database and cDNA microarray:
 data mining and interspecific hybridization

characteristics. Genome Res., 14: 478-490. 2004.

- Russell, S. and J.S. Lumsden. Function and heterogeneity of fish lectins. Vet. Immunol. Immunopathol., 108: 111-120. 2005.
- Shephard, K.L. Functions for fish mucus. Rev. Fish Biol. Fisher., 4: 401-409. 1994.
- Sohn, S.G., D.L. Choi, J.W. Do, G.Y. Hwang and J.W. Park. Mass mortalities of cultured striped beakperch, *Oplegnathus fasciatus* by iridoviral infection. J. Fish Pathol., 13: 121-127. 2000.
- Tânia, C., L.Z. Saraiva, E.N. Grund, D.B.S. Komegae, D.R. Anderson, C. Katia, M. Noemia C.L. Orii and L.F. Mônica. Nattectin a fish C-type lectin licenses macrophages to differentiate into cells exhibiting typical dendritic cells function. Cytokine, 48: 107. 2009.
- Ton, C., D.M. Hwang, A.A. Dempsey, H.C. Tang, J. Yoon, M. Lim, J.D. Mably, M.C. Fishman and C.C. Liew. Identification, characterization, and mapping of expressed sequence tags from an embryonic zebrafish heart cDNA library. Genome Res., 10: 1915-1927. 2000.
- Zelensky, A.N. and J.E. Gready. C-type lectin-like domains in *Fugu rubripes*. BMC Genomics, 5: 51. 2004.
- Zeng, S. and Z. Gong. Expressed sequence tag analysis of expression profiles of zebrafish testis and ovary. Gene, 10: 45-53. 2002.

Manuscript Received : September 3, 2010 Revised : November 10, 2010 Accepted : November 16, 2010