DOI QR코드

DOI QR Code

Physiological Characteristics and Immunomodulating Activity by Lactobacillus paracasei subsp. paracasei BFI46 Isolated from New-Born Infant Feces

  • Received : 2009.11.03
  • Accepted : 2010.04.06
  • Published : 2010.04.30

Abstract

In order to develop a new starter for fermented milk, Lactobacillus paracasei subsp. paracasei BFI46 (BFI46) obtained from new-born infant feces was investigated for physiological characteristics. Good immunomodulating activity was evident compared with commercial lactic acid bacteria starter cultures. The optimum growth temperature of BFI46 was $40^{\circ}C$ with 12 h required to reach pH 4.3. Testing with 13 different antibiotics revealed greatest sensitivity of BFI46 to penicillin- G and chloramphenicol, and heightened resistance to neomycin, kanamycin and polymyxin. BFI46 displayed higher esterase activities compared to 18 other enzymes, was comparatively tolerant to bile juice and able to survive at pH 2 for 3 h, and displayed high resistance against Escherichia coli and Salmonella Typhimurium with a survival rate of 57.14% and 96.36%, respectively. The results indicate that BFI46 could be an excellent starter culture for fermented milk with high level of immunomodulating activity.

Keywords

References

  1. Adolfsson, O., Meydani, S. N., and Russell, R. M. (2004) Yoghurt and gut fuction. Am. J. Clin. Nutr. 80, 245-256.
  2. Alvarez-Olmos, M. I. and Oberhelman, R. A. (2001) Probiotic agents and infectious diseases : a modern perspective on a traditional therapy. Clin. Infect. Dis. 32, 1567-1576. https://doi.org/10.1086/320518
  3. Booth, I. R. (1985) Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 359, 378-390.
  4. Chapat, L., Chemin, K., Dubois, B., Bourdet-Sicard, R., and Kaiserlian, D. (2004) Lactobacillus casei reduces CD8+T cell-mediated skin inflammation. Eur. J. Immunol. 34, 2520-2528. https://doi.org/10.1002/eji.200425139
  5. Clark, P. A., Cotton, L. N., and Martin, J. H. (1993) Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: II-Tolerance to simulated pH of Human Stomachs. Cultured Dairy Products J. 28, 11-14.
  6. Cross, M. L. (2002) Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol. Med. Microbiol. 34, 245-253. https://doi.org/10.1111/j.1574-695X.2002.tb00632.x
  7. Cross, M. L., Ganner, A., Teilab, D., and Fray, L. M. (2004) Patterns of cytokine induction by Gram-positive and Gramnegative probiotic bacteria. FEMS Immunol. Med. Microbiol. 42, 173-180. https://doi.org/10.1016/j.femsim.2004.04.001
  8. Dinarello, C. A. (1991) Inflammatory cytokines : interleukin- 1 and tumor necross factor as effector molecules in autoimmune diseases. Curr. Opin. Immunol. 3, 941-948. https://doi.org/10.1016/S0952-7915(05)80018-4
  9. Faure, E., Equils, O., Sieling, P. A., Thomas, L., Zhang, F. X., and Kirschning, C. J. (2000) Bacterial lipopolysaccharide activates NF-kB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. J. Biol. Chem. 275, 11058-11063. https://doi.org/10.1074/jbc.275.15.11058
  10. Galdeano, C. M. and Perdigon, G. (2006) The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin. vaccine Immunol. 13, 219-226. https://doi.org/10.1128/CVI.13.2.219-226.2006
  11. Gill, H. S. (1998) Stimulation of the immune system by lactic culture. Int. Dairy J. 8, 535-544 https://doi.org/10.1016/S0958-6946(98)00074-0
  12. Gill, H. S. and Guarner, F. (2004) Probiotics and human health: a clinical perspective. Postgrad. Med. J. 80, 516-526. https://doi.org/10.1136/pgmj.2003.008664
  13. Gilliland, S. E. and Speck, M. L. (1977) Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Prot. 40, 820-823.
  14. Gilliland, S. E. and Walker, D. K. (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73, 905-911. https://doi.org/10.3168/jds.S0022-0302(90)78747-4
  15. Goldin, B. R. and Gorbach, S. L. (1977) Alterations in fecal microflora enzymes related to diet, age, Lactobacillus supplements and dimethylhydrazine. Cancer. 40, 2421-2426. https://doi.org/10.1002/1097-0142(197711)40:5+<2421::AID-CNCR2820400905>3.0.CO;2-I
  16. Goldin, B. R., Gualtieri, L. J., and Moore, R. P. (1996) The effects of Lactobacillus GG on the initiation and promotion of DMH-induced intestinal tumors in the rat. Nutr. Cancer. 25, 197-204. https://doi.org/10.1080/01635589609514442
  17. Hart, A. L., Stagg, A. J., and Kamm, M. A. (2003) Use of probiotics in the treatment of inflammatory bowel disease. J. Clin. Gastroenterol. 36, 111-119. https://doi.org/10.1097/00004836-200302000-00005
  18. Hirayama, K. and Rafter, J. (2000) The role of probiotic bacteria in cancer prevention. Microb. Infect. 2, 681-686. https://doi.org/10.1016/S1286-4579(00)00357-9
  19. Jeon, S. R., Song, T. S., Kim, J. Y., Shin, W. C., Her, S. W., and Yoon, S. S. (2007) Identification and characterization of lactic acid bacteria starters isolated from the commercial drink-yogurt products. Korean J. Food Sci. Ani. Resour. 27, 509-516. https://doi.org/10.5851/kosfa.2007.27.4.509
  20. Kang, H. S., Kim, Y. H., Lee, C. S., Lee, J. J., Choi, I. P., and Pyun, K. H. (1996) Suppression of interleukin-1 and tumor necrosis factor- $\alpha$production by acanthoic acid, (-)-pimara- 9(11), 15-dien-19-oic acid, and its antifibrotic effects in vivo. Cell. Immunol. 170, 212-221. https://doi.org/10.1006/cimm.1996.0154
  21. Karlsson, H., Larsson, P., Wold, A. E., and Rudin, A. (2004) Pattern of cytokine responses to gram-positive and gramnegative commensal bacteria is profoundly changed when monocytes differentiate into dendritic cells. Infect. Immun. 72, 2671-2678. https://doi.org/10.1128/IAI.72.5.2671-2678.2004
  22. de LeBlanc, A. de M., Matar, C., Farnworth, E., and Perdigon, G. (2006) Studt of cytokines involved in the prevention of a murine experimental breast cancer by kefir. Cytokine. 34, 1-8. https://doi.org/10.1016/j.cyto.2006.03.008
  23. LeBlanc, J. G., Matar, C., Valdez, J. C., Leblanc, J., and Perdigon, G. (2002) Immunomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. J. Dairy Sci. 85, 2733-2742. https://doi.org/10.3168/jds.S0022-0302(02)74360-9
  24. Lidbeck, A., Nord, C. E., Gustafsson, J. A., and Rafter, J. (1992) Lactobacilli, anticarcinogenic activities and human intestinal microflora. Eur. J. Cancer Prev. 1, 341-353. https://doi.org/10.1097/00008469-199208000-00002
  25. Lim, S. D., Kim, K. S., and Do, J. R. (2009) Physiological characteristics and GABA production of Lactobacillus acidophilus RMK567 isolated from raw milk. Korean J. Food Sci. Ani. Resour. 29, 15-23. https://doi.org/10.5851/kosfa.2009.29.1.15
  26. Lim, S. D., Kim, K. S., and Do, J. R. (2008) Physiological characteristics and ACE inhibitory activity of Lactobacillus zeae RMK354 isolated from raw milk. Korean J. Food Sci. Ani. Resour. 28, 587-595. https://doi.org/10.5851/kosfa.2008.28.5.587
  27. Liu, J. R., Chen, M. J., and Lin, C. W. (2005) Antimutagenic and antioxidant properties of milk-kefir and soymilk-kefir. J. Agri. Food Chem. 53, 2467-2474. https://doi.org/10.1021/jf048934k
  28. Liu, J. R., Wang, S. Y., Chen, M. J., Yueh, P. Y., and Lin, C. W. (2006) The anti-allergenic properties of milk kefir and soymilk kefir and their beneficial effects on the intestinal microflora. J. Sci. Food Agri. 86, 2527-2533. https://doi.org/10.1002/jsfa.2649
  29. Liu, J. R., Wang, S. Y., Lin, Y. Y., and Lin, C. W. (2002) Antitumor activity of milk-kefir and soymilk-kefir in tumor-bearing mice. Nutr. Cancer 44, 182-187.
  30. Maragkoudakis, P. A., Zoumpopoulou, G., Miaris, C., Kalantxopoulos, G., Pot, B., and Tsakalidou, E. (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy J. 16, 189-199. https://doi.org/10.1016/j.idairyj.2005.02.009
  31. Marin, M. L., Tejada-Simon, M. V., Murtha, J., Ustunol, Z., and Pestka, J. J. (1997) Effects of Lactobacillus spp. on cytokine production by raw 264.7 macrophage and EL-4 thymoma cell lines. J. Food Prot. 60, 1364-1370.
  32. Matsuzaki, T., Yamazaki, R., Hashimoto, S., and Yokokura, T. (1998) The effect of oral feeding of Lactobacillus casei strain Shirota on immunoglobulin E production in mice. J. Dairy Sci. 81, 48-53. https://doi.org/10.3168/jds.S0022-0302(98)75549-3
  33. Mcdonald, L. C., Fleming, H. P., and Hassan, H. M. (1990) Acid tolerance of Leuconostoc mesenteroides and Lactobacillus casei. Appl. Environ. Microbiol. 53, 2124-2128.
  34. Meydani, S. N. and Ha, W. K. (2000) Immunologic effects of yogurt. Am. J. Clin. Nutr. 71, 861-872.
  35. Perdigon, G., Alvarez, S., and Medici, M. (1992) Systemic and local augmentation of the immune response in mice by feeding with milk fermented with Lactobacillus acidophilus and/or Lactobacillus casei. Dyn. Nutr. Res. 1, 66-76.
  36. Reddy, B. S. and Rivenson, A. (1993) Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo[4.5f] quinoline, a food mutagen. Cancer Res. 53, 3914-3918.
  37. Schiffrin, E. J., Rochat, F., Link-Amster, H., Aeschlimann, J. M., and Donnet-Hughes, A. (1995) Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J. Dairy Sci. 78, 491-497. https://doi.org/10.3168/jds.S0022-0302(95)76659-0
  38. Sekine, K., Kawashima, T., and Hashimoto, Y. (1994) Comparison of the TNF-$\alpha$ levels induced by human-derived Bifidobacterium longum and rat-derived Bifidobacterium animalis in mouse peritoneal cells. Bifidobacteria microflora. 13, 79-89. https://doi.org/10.12938/bifidus1982.13.2_79
  39. Shida, K., Takahashi, R., Iwagate, E., Takamizawa, K., Yasui, H., and Sato, T. (2002) Lactobacillus casei strain Shirota suppresses serum immunoglobulin E and immunoglobulin G1 responses and systemic anaphylaxis in a food allergy model. Clin. Exp. Allergy. 32, 563-570. https://doi.org/10.1046/j.0954-7894.2002.01354.x
  40. Shiomi, M., Sasaki, K., Murofushi, M., and Aibara, K. (1982) Antitumor activity in mice of orally administered polysaccharide from kefir grain. Jpn. J. Med. Sci. Biol. 35, 75-80. https://doi.org/10.7883/yoken1952.35.75
  41. Solis Pereyra, B., Falcoff, R., Falcoff, E., and Lemonnier, D. (1991) Interferon induction by Lactobacillus bulgaricus and Streptococcus thermophilus in mice. Eur. Cytokine Network. 2, 299-303.
  42. Takeda, K. and Akira, S. (2005) Toll-like receptor in innate immunity. Int. Immunol. 17, 1-14.
  43. Tejada-Simon, M. V. and Pestka, J. J. (1999) Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J. Food Prot. 62, 1435-1444.
  44. Tejada-Simon, M. V. , Ustunol, Z., and Pestka, J. J. (1999) Ex vivo effects of Lactobacilli, Streptococci, and Bifidobacteria ingestion on cytokine and nitric oxide production in a murine model. J. Food Prot. 62, 162-169.
  45. Vinderola, G., Perdigon, G., Duarte, J., Farnworth, E., and Matar, C. (2006) Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36, 254-260. https://doi.org/10.1016/j.cyto.2007.01.003
  46. Yasutake, N., Matsuzaki, T., Kimura, K., Hashimoto, S., Yokokura, T., and Yoshikai, Y. (2000) The role of tumor necrosis factor(TNF)-alpha in the antitumor effect of intrapleural injection of Lactobacillus casei strain Shirota in mice. Med. Microbiol. Immunol. 188, 9-14.

Cited by

  1. Physiological Characteristics and Production of Vitamin K2by Lactobacillus fermentum LC272 Isolated from Raw Milk vol.31, pp.4, 2011, https://doi.org/10.5851/kosfa.2011.31.4.513
  2. Physiological Characteristics and Immunomodulating Activity of Streptococcus macedonicus LC743 Isolated from Raw Milk vol.30, pp.6, 2010, https://doi.org/10.5851/kosfa.2010.30.6.957
  3. Yogurt Production Using Exo-polysaccharide-producing Leuconostoc and Weissella Isolates from Kimchi vol.48, pp.3, 2016, https://doi.org/10.9721/KJFST.2016.48.3.231
  4. Immunomodulatory and Antigenotoxic Properties of Bacillus amyloliquefaciens KU801 vol.41, pp.2, 2010, https://doi.org/10.4014/kjmb.1301.01008