DOI QR코드

DOI QR Code

Comparison of Methods for Detection of Escherichia coli O157:H7 in Ground Beef and Radish Sprouts

  • Lee, Jae-Hoon (Department of Public Health, College of Veterinary Medicine, Konkuk University) ;
  • Hyeon, Ji-Yeon (Department of Public Health, College of Veterinary Medicine, Konkuk University) ;
  • Heo, Seok (Food Microbilogy Division, National Instituet of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Hwang, In-Gyun (Food Microbilogy Division, National Instituet of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Kwak, Hyo-Sun (Food Microbilogy Division, National Instituet of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Choi, In-Soo (Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University) ;
  • Park, Chan-Kyu (Department of Animal Biotechnology, Konkuk University) ;
  • Seo, Kun-Ho (Department of Public Health, College of Veterinary Medicine, Konkuk University)
  • Received : 2009.10.07
  • Accepted : 2010.03.10
  • Published : 2010.04.30

Abstract

Escherichia coli O157:H7 is a food-borne pathogen that causes bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). We compared three selective media and evaluated the performance of immunomagnetic separation (IMS) for the detection of low levels of E. coli O157:H7 in ground beef and radish sprouts with different levels of background flora. Bulk food samples (500 g for each trial) were artificially inoculated with nalidixic acid-resistant E. coli O157:H7 at the lowest dose that would generate 20 partial-positive samples of 25 g each. All samples were homogenized in mTSB (225 mL) and incubated overnight at $37^{\circ}C$. IMS was performed using the enriched mTSB samples (1 mL) along with conventional spreads plated onto three different selective media: Sorbitol MacConkey agar (SMAC), Sorbitol MacConkey agar with cefixime and tellulite (CT-SMAC), and Sorbitol MacConkey agar with nalidixic acid (NAL-SMAC) as the gold standard. Two suspicious colonies from each medium were selected and confirmed usinga serological test after transfer to tryptic soy broth with yeast extract (TSAYE). CT-SMAC was better than SMAC for detecting E. coli O157:H7 in all food types. Although there was no statistical difference in the number of positive samples when using IMS vs. non-IMS techniques, more positive samples were detected when IMS was used in both ground beef and radish sprouts. It appears that the improvement was more significant in radish sprouts, which had a higher level of background flora than ground beef. The results also suggest that the combination of CT-SMAC and IMS is sufficient to recover low levels of E. coli O157:H7 in high background flora food samples.

Keywords

References

  1. Ackers, M. L., Mahon, B. E., Leahy, E., Goode, B., Damrow, T., Hayes, P. S., Bibb, W. F., Rice, D. H., Barrett, T. J., Hutwagner, L., Griffin, P. M., and Slutsker, L. (1998) An outbreak of Escherichia coli O157:H7 infections associated with leaf lettuce consumption. J. Infect. Dis. 177, 1588-1593. https://doi.org/10.1086/515323
  2. Aminul Islam, M., Heuvelink, A. E., Talukder, K. A., and de Boer, E. (2006) Immunoconcentration of Shiga toxin-producing Escherichia coli O157 from animal faeces and raw meats by using Dynabeads anti-E. coli O157 and the VIDAS system. Int. J. Food Microbiol. 109, 151-156. https://doi.org/10.1016/j.ijfoodmicro.2006.01.010
  3. Besser, R. E., Lett, S. M., Weber, J. T., Doyle, M. P., Barrett, T. J., Wells, J. G., and Griffin, P. M. (1993) An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157:H7 in fresh-pressed apple cider. JAMA 269, 2217-2220. https://doi.org/10.1001/jama.269.17.2217
  4. Cleary, T. G. (2004) The role of Shiga-toxin-producing Escherichia coli in hemorrhagic colitis and hemolytic uremic syndrome. Semin. Pediatr. Infect. Dis. 15, 260-265. https://doi.org/10.1053/j.spid.2004.07.007
  5. Cooley, M., Carychao, D., Crawford-Miksza, L., Jay, M. T., Myers, C., Rose, C., Keys, C., Farrar, J., and Mandrell, R. E. (2007) Incidence and tracking of Escherichia coli O157:H7 in a major produce production region in California. PLoS ONE. 2, e1159. https://doi.org/10.1371/journal.pone.0001159
  6. Chapman, P. A., Ellin, M., and Ashton, R. (2001) A comparison of immunomagnetic separation and culture, Reveal and VIP for the detection of E. coli O157 in enrichment cultures of naturally-contaminated raw beef, lamb and mixed meat products. Lett. Appl. Microbiol. 32, 171-175. https://doi.org/10.1046/j.1472-765x.2001.00883.x
  7. Chapman, P. A., Wright, D. J., and Siddons, C. A. (1994) A comparison of immunomagnetic separation and direct culture for the isolation of verocytotoxin-producing Escherichia coli O157 from bovine faeces. J. Med. Microbiol. 40, 424-427. https://doi.org/10.1099/00222615-40-6-424
  8. de Boer, E. (1998) Update on media for isolation of Enterobacteriaceae from foods. Int. J. Food Microbiol. 45, 43-53. https://doi.org/10.1016/S0168-1605(98)00146-9
  9. Deisingh, A. K. and Thompson, M. (2004) Strategies for the detection of Escherichia coli O157:H7 in foods. J. Appl. Microbiol. 96, 419-429. https://doi.org/10.1111/j.1365-2672.2003.02170.x
  10. Fratamico, P. M. and Bagi, L. K. (2007) Comparison of methods for detection and isolation of cold- and freezestressed Escherichia coli O157:H7 in raw ground beef. J. Food Prot. 70, 1663-1669.
  11. Fu, Z., Rogelj, S., and Kieft, T. L. (2005) Rapid detection of Escherichia coli O157:H7 by immunomagnetic separation and real-time PCR. Int. J. Food Microbiol. 99, 47-57. https://doi.org/10.1016/j.ijfoodmicro.2004.07.013
  12. Fujisawa, T., Sata, S., Aikawa, K., Takahashi, T., Yamai, S., and Shimada, T. (2000) Modification of sorbitol MacConkey medium containing cefixime and tellurite for isolation of Escherichia coli O157:H7 from radish sprouts. Appl. Environ. Microbiol. 66, 3117-3118. https://doi.org/10.1128/AEM.66.7.3117-3118.2000
  13. Griffin, P. M., Ostroff, S. M., Tauxe, R. V., Greene, K. D., Wells, J. G., Lewis, J. H., and Blake, P. A. (1988) Illnesses associated with Escherichia coli O157:H7 infections. A broad clinical spectrum. Ann. Intern. Med. 109, 705-712. https://doi.org/10.7326/0003-4819-109-9-705
  14. Harrison, J. A., Harrison, M. A., and Rose, R. A. (1998) Survival of Escherichia coli O157:H7 in ground beef jerky assessed on two plating media. J. Food Prot. 61, 11-13.
  15. Ibekwe, A. M., Watt, P. M., Grieve, C. M., Sharma, V. K., and Lyons, S. R. (2002) Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157:H7 in dairy wastewater wetlands. Appl. Environ. Microbiol. 68, 4853-4862. https://doi.org/10.1128/AEM.68.10.4853-4862.2002
  16. Jo, S. H., Ha, J. H., Kim, K. S., Shim, Y. H., Kwon, K. S., Han, J. A., Hwang, I. G., Ha, S. D., and Oh, D. H. (2007) Evaluation of selective media for isolation of foodborne bacteria. J. Fd. Hyg. Safety 22, 388-394.
  17. Karch, H., Janetzki-Mittmann, C., Aleksic, S., and Datz, M. (1996) Isolation of enterohemorrhagic Escherichia coli O157 strains from patients with hemolytic-uremic syndrome by using immunomagnetic separation, DNA-based methods, and direct culture. J. Clin. Microbiol. 34, 516-519.
  18. LeJeune, J. T., Hancock, D. D., and Besser, T. E. (2006) Sensitivity of Escherichia coli O157 detection in bovine feces assessed by broth enrichment followed by immunomagnetic separation and direct plating methodologies. J. Clin. Microbiol. 44, 872-875. https://doi.org/10.1128/JCM.44.3.872-875.2006
  19. Mortlock, S. (1994) Recovery of Escherichia coli 0157:H7 from mixed suspensions: evaluation and comparison of precoated immunomagnetic beads and direct plating. Br. J. Biomed. Sci. 51, 207-214.
  20. O'Brien, S. B., Duffy, G., Daly, D., Sheridan, J. J., Blair, I. S., and McDowell, D. A. (2005) Detection and recovery rates achieved using direct plate and enrichment/immunomagnetic separation methods for Escherichia coli O157:H7 in minced beef and on bovine hide. Lett. Appl. Microbiol. 41, 88-93. https://doi.org/10.1111/j.1472-765X.2005.01667.x
  21. Ogden, I. D., Hepburn, N. F., and MacRae, M. (2001) The optimization of isolation media used in immunomagnetic separation methods for the detection of Escherichia coli O157 in foods. J. Appl. Microbiol. 91, 373-379. https://doi.org/10.1046/j.1365-2672.2001.01397.x
  22. Onoue, Y., Konuma, H., Nakagawa, H., Hara-Kudo, Y., Fujita, T., and Kumagai, S. (1999) Collaborative evaluation of detection methods for Escherichia coli O157:H7 from radish sprouts and ground beef. Int. J. Food Microbiol. 46, 27-36. https://doi.org/10.1016/S0168-1605(98)00174-3
  23. Rangel, J. M., Sparling, P. H., Crowe, C., Griffin, P. M., and Swerdlow, D. L. (2005) Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002. Emerg. Infect. Dis. 11, 603-609. https://doi.org/10.3201/eid1104.040739
  24. Riley, L. W., Remis, R. S., Helgerson, S. D., McGee, H. B., Wells, J. G., Davis, B. R., Hebert, R. J., Olcott, E. S., Johnson, L. M., Hargrett, N. T., Blake, P. A., and Cohen, M. L. (1983) Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 308, 681-685. https://doi.org/10.1056/NEJM198303243081203
  25. Tarr, P. I., Gordon, C. A., and Chandler, W. L. (2005) Shigatoxin- producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365, 1073-1086.
  26. Vernozy-Rozand, C., Mazuy, C., Ray-Gueniot, S., Boutrand- Loei, S., Meyrand, A., and Richard, Y. (1998) Evaluation of the VIDAS methodology for detection of Escherichia coli O157 in food samples. J. Food Prot. 61, 917-920.
  27. Zadik, P. M., Chapman, P. A., and Siddons, C. A. (1993) Use of tellulite for the selection of verocytotoxigenic Escherichia coli O157. J. Med. Microbiol. 29, 155-158,

Cited by

  1. Evaluation of Ceftazidime as an Antibiotic Supplement in Mannitol-Yolk-Polymyxin B Agar Used for Enumeration of Bacillus cereus in Ready-to-Eat Vegetables vol.84, pp.10, 2010, https://doi.org/10.4315/jfp-20-405
  2. Detection of Campylobacter jejuni from Fresh Produce: Comparison of Culture- and PCR-based Techniques, and Metagenomic Approach for Analyses of the Microbiome before and after Enrichment vol.84, pp.10, 2010, https://doi.org/10.4315/jfp-20-408