DOI QR코드

DOI QR Code

Formulation of Bacillus amyloliquefaciens A-2 and Its Efficacy to Control Tomato Leaf Mold Caused by Fulvia fulva

길항세균 Bacillus amyloliquefaciens A-2를 이용한 토마토 잎곰팡이병 방제용 미생물 제제

  • Received : 2010.01.22
  • Published : 2010.04.01

Abstract

This study was performed to develop a formulation using an antagonistic bacterium Bacillus amyloliquefaciens A-2 to control tomato leaf mold caused by Fulvia fulva. B. amyloliquefaciens A-2 was grown in a medium with rice oil and mixed with various carrier and additives. One of the formulations, A2-MP, showed the best disease control value among the tested formulations. The disease control value of A2-MP at 100-fold and 500-fold diluted treatment was not significantly different from that of chemical fungicide triflumizole in a growth chamber. Although disease control effect was decreased by serial diluted treatment of the prepared A2-MP, 1,000-fold diluted treatment of A2-MP still showed high disease control value of 72.0%. For the green house experiments, the disease control values of A2-MP was indicated as 79.4% which is similar to that of chemical fungicide, triflumizole showing 79.6%. When the disease control activity of the formulation A2-MP was compared in tomato production conditions, disease control values of 100-fold diluted A2-MP and 3,000 fold diluted triflumizole exhibited 60%, 81.6%, respectively. The disease control efficiency by A-2MP was 73% of the disease control value of chemical fungicide. The formulation A-2MP maintained the stable bacterial viability and disease control activity when stored at $4^{\circ}C$. This result suggested that A-2MP develped from B. amyloliquefaciens A-2 could be used to control tomato leaf mold.

토마토 시설재배에서 증가하는 토마토 잎곰팡이병을 방제할 미생물 제제를 병원균 Fulvia fulva에 길항력이 강한 미생물 Bacillus amyloliquefaciens A-2 균주를 이용하여 개발하기 위해 본 연구를 수행하였다. 미생물 A-2 균주를 이용하여 개발하기 위해 본 연구를 수행하였다. 미생물 A-2 균주를 현미유가 첨가된 배지에서 대량 발효배양하고 각종 전달매체와 첨가제를 혼합하고 건조하여 제조흰 미생물 제제들의 효과를 검정하였다. 제조된 제제 A-2H가 방제 효과가 가장 우수하였으나 처리에서 단점으로 인해 이를 보완하며 효과가 통일한 제형인 A-2MP를 선발하였다. 선발된 A-2MP는 100배, 500배 희석처리 후 생육상에서 토마토에 처리한 경우 화학농약과 대등한 방제효과를 나타 내었다. 더욱이 1,000배 희석처리에서도 화학농약보다 효과가 감소하였으나 72% 정도의 방제효과를 보였다. 토마토를 토경재배한 용실에서 A-2MP의 방제효과를 검정한 결과 100배 희석 처리구의 경우 79.4%의 방제효과를 나타내 화학농약 트리후미졸 처리구의 79.6%의 방제효과와 차이가 없었다. A-2MP 제제를 62.2%의 자연발병한 농가의 온실에서 방제효과 검정한 결과 100배 희석액을 일주일 간격으로 3회 처리한 경우 60%의 방제가로 화학농약 방제가 81.6%보다 낮았으나 화학농약 효과의 73% 수준으로 나타났다. 한편, A-2MP제제를 $4^{\circ}C$$25^{\circ}C$ 보관한 경우 모두 10개월동안 생균수 및 방체효과과 안정적으로 유지되었다. 본 연구결과는 저렴한 원료와 길항균 B.amyloliquefaciens A-2 균주를 활용한 A2-MP제제가 토마토 잎공팡이병 방제용으로 쓰일 수 있음을 보여준다.

Keywords

References

  1. Abiko, K. and Ishii, M. 1986. Influence of temperature and humidity on the outbreak of tomato leaf mold (by Cladosporium fulvum). Bull. Veg. Ornam. Crop. Res. Stn. (Japanese) 14: 133-140.
  2. Alderman, S. C. and Beute, M. K. 1986. Influence of temperature and moisture on germination and germ tuve elongation of Cercospora arachidicola. Phytopathology 76: 715-719. https://doi.org/10.1094/Phyto-76-715
  3. 안기정. 2005. 타피오카 전분을 첨가한 절편의 품질 특성. 한국조리학회 11: 179-189.
  4. 조원대, 김완규, 지형진, 최홍수, 이승돈, 김충희, 유재기, 고현관, 이승환, 최준열, 이관석. 2004. 채소 병해충 진단과 방제. 아카데미서적. pp. 78.
  5. 전옥주. 2005 . 토마토 잎곰팡이 병(Fulvia fulva) 방제 미생물 농약의 개발. 동아대학교 석사논문.
  6. Curtis, M. D., Gore, J. and Oliver, R. P. 1994. The phylogeny of the tomato leaf mould fungus Cladosporium fulvum syn. Fulvia fulva by analysis of rDNA sequences. Curr Genet. 25: 318-322. https://doi.org/10.1007/BF00351484
  7. Fravel, D. R., Connick Jr., W. J. and Lewis, J. A. 1998. Formulation of microorganisms to control plant diseases. In: Formulation of microbial pesticides: Beneficial microorganisms, nematodes and seed treatments, eds by H. D. Burges, pp. 187-202. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  8. Knogge, W. 1996. Fungal infection of plants. Plant Cell 8: 1711-1722. https://doi.org/10.1105/tpc.8.10.1711
  9. Emmert, E. A. B. and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171: 1-9. https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  10. Guba, E. F. 1938. Tomato leaf mold as influenced by environment. Mass. Agric. Exp. Stn. Bull. 350: 1-24.
  11. Jones, J. B., Stall, R. E. and Zitter, T. A. 1991. Compendium of Tomato Disease. APS Press. Minnesota. 73 pp.
  12. 김성현, 부우평란, 이기택. 2004. 현미유를 이용한 기능성 유지의 효소적 합성 및 콜레스테롤, 고지방 식이가 생쥐의 간 ACAT활성에 미치는 영향. 한국식품영양과학회지 33: 803-809.
  13. Kishi, K. and Abiko, K. 1976. Studies on the physiological specialization of Cladosporium fulvum Cooke. II. Racial identification of isolates collected from II prefectures in Japan from 1971 to 1973. Ann. Phytopathol. Soc. Jpn. 42: 497-499. https://doi.org/10.3186/jjphytopath.42.497
  14. Kishi, K. 1962. Studies on the physiological specialization of Cladosporium fulvum Cooke. Ann. Phytopathol. Soc. Jpn. 27: 189-196. https://doi.org/10.3186/jjphytopath.27.189
  15. Lindhout, P., Korta, W., Cislik, M., Vos, I. and Gerlagh, T. 1989 Further identification of races of Cladosporium fulvum(Fulvia fulva) on tomato originating from The Netherlands, France and Poland. Neth. J. Plant Pathol. 95: 143-148. https://doi.org/10.1007/BF01999969
  16. Lumsden, R.D. Lewis, J. A. and Fravel, D. R. 1995. Formulation and delivery of biocontrol agents for use against soilborne plant pathogens. In: Biorational pest control agents formulation and delivery, by eds. by F. R. Hall and J. W. Barry, pp. 162-182. American Chemical Society, Washington DC, USA.
  17. 오연이, 박은우, 조일규, 강창성, 김성기, 양장석. 1996. 잎에 집적된 Triflumizole 잔류량의 온도에 따른 경시적 동태와 잎곰팡이 병균에 대한 약효. 한국식물병리학회지 12: 307-314.
  18. Ozaki, K. and Shirakawa, T. 1996. Pathogenic races of Fulvia fulva in Iwate Prefecture. Ann. Rep. Plant Prot. North Jpn. 47: 62-64.
  19. Tamez-Guerra, P., McGuire, M. R., Behle, R. W., Shasha, B. S. and Galn Wong, L. J. 2000. Assessment of microencapsulated formulations for improved residual activity of Bacillus thuringiensis. J. Econ. Entomol. 93: 219-225. https://doi.org/10.1603/0022-0493-93.2.219
  20. Schisler, D. A., Slininger, P. J., Behle, R. W. and Jackson, M. A. 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology, 94: 1267-1271. https://doi.org/10.1094/PHYTO.2004.94.11.1267
  21. Souto, G. I., Correa, O. S., Montecchia, M. S., Kerber. N. L., Pucheu, N. L., Bachur, M. and Garcia, A. F. 2004. Genetic and functional antifungal metabolites partially identified as iturin-like compounds. J. Appl. Microbiol. 97: 1247-1256. https://doi.org/10.1111/j.1365-2672.2004.02408.x

Cited by

  1. Determination of Proper Application Timing and Frequency for Management of Tomato Leaf Mold Disease by Commercially Available Microbial Preparations vol.17, pp.2, 2011, https://doi.org/10.5423/RPD.2011.17.2.142
  2. Suppression Effect and Mechanism of Citrus Scab in the Citrus Pre-inoculated with Rhizobacterial Strains vol.17, pp.3, 2011, https://doi.org/10.5423/RPD.2011.17.3.302
  3. The global regulator GacS regulates biofilm formation inPseudomonas chlororaphisO6 differently with carbon source vol.60, pp.3, 2014, https://doi.org/10.1139/cjm-2013-0736
  4. Isolation and Characterization of an Antagonistic Endophytic Bacterium Bacillus velezensis CB3 the Control of Citrus Green Mold Pathogen Penicillium digitatum vol.40, pp.2, 2012, https://doi.org/10.4489/KJM.2012.40.2.118
  5. Antagonistic Activities of Bacillus spp. Strains Isolated from Tidal Flat Sediment Towards Anthracnose Pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea vol.31, pp.2, 2015, https://doi.org/10.5423/PPJ.OA.03.2015.0036
  6. Effect of Chlorella Culture Solution Using Anaerobic digestate on Seed Germination in Perennial Ryegrass vol.38, pp.1, 2018, https://doi.org/10.5333/KGFS.2018.38.1.7
  7. Effect of Chlorella(Chlorella fusca) Culture Solution Using Anaerobic Digestate on Seed Germination in Red pepper(Capcisum annuum L.) vol.30, pp.1, 2018, https://doi.org/10.12719/KSIA.2018.30.1.37