DOI QR코드

DOI QR Code

자체 감지능 및 작동기용 다기능 하이브리드 나노복합재료의 계면 특성 및 소수성 표면 연구

Interfacial Evaluation and Hydrophobicity of Multifunctional Hybrid Nanocomposites for Self-sensing and Actuation

  • 왕작가 (경상대학교 나노.신소재공학부) ;
  • 공조엘 (경상대학교 나노.신소재공학부) ;
  • 장정훈 (한국재료연구소 복합재료그룹) ;
  • 김명수 (경상대학교 나노.신소재공학부) ;
  • 박종만 (경상대학교 나노.신소재공학부)
  • 발행 : 2010.04.30

초록

니켈-나노분말/에폭시 복합재료의 계면 특성과 소수성을 자체-감지능과 작동기 측정을 위해 평가하였다. 경사형 시편을 사용하여 접촉 저항 및 저항도를 측정하였다. 자기장에서 복합재료의 작동성을 세가지 파형들, 즉, 싸인, 삼각, 그리고 사각파를 사용하여 평가하였다. 균일하지 않은 표면에 존재하는 소수성 영역 때문에 Ni-에폭시 나노복합재료의 어떤 부분은 초소수성보다는 다소 낮은 접촉각인 110도를 가졌다. 동적 접촉각은 정적 접촉각과 경향이 상호 일치함을 보였다. 니켈-나노분말의 고유의 금속성질 때문에 자체 감지를 확인하였으며, 또한 전자기장에 작동 반응을 잘 하였다. 니켈-나노분말/에폭시 복합재료의 최대 및 최적의 성능을 얻기 위해서, 레이져 변위 센서를 사용하여, 파형, 주파수, 그리고 전압의 함수로 작동기의 변위를 평가하였다. 니켈-나노분말/에폭시 복합재료의 작동은 적용된 주파수와 전압의 함수로써 증가하였다. 작동된 복합재료들의 연신율은 전압의 증가에 따라 삼각 혹은 사각파보다 싸인파에서 더욱 빨리 증가하였다.

Interfacial evaluation and hydrophobicity of Ni-nanopowder/epoxy composites were investigated for self-sensing and actuation. Contact resistance and resistivity were measured using gradient micro-specimens. The actuation of the composites in the electromagnetic field was studied with three wave functions, i.e., sine, triangle and square functions. Due tothe presence of hydrophobic domains on the heterogeneous surface, the static contact angle of Ni-nanopowder/epoxy nanocomposite wasabout $100^{\circ}$, which was rather lower than that for super-hydrophobicity. The dynamic contact angle showed the similar trend of static contact angle. Ni-nanopowder/epoxy composite was responded wellfor both self-sensing and actuation in electromagnetic field due to the intrinsic metal property of Ni-nanopowder. Displacement of the actuator of Ni-nanopowder/epoxy composite was evaluated to obtain the maximum and the optimum performance using laser displacement sensor as functions of the wave type, frequency, and voltage. Actuation of Ni-nanopowder/epoxy composites also increased as functions of applied frequency and voltage. Actuated strain increased more rapidly at sine wave with increasing voltage compared to those of triangle or rectangular waves.

키워드

참고문헌

  1. S. J. Park, and Y. S. Jang, "Interfacial characteristics and fracture toughness of electrolytically Ni-plated carbon fiber-reinforced phenolic resin matrix composites," J. Coll. Interf. Sci., Vol. 237, 2001, pp. 91-97. https://doi.org/10.1006/jcis.2001.7441
  2. L. Jin, F. Qun, W. H. Chen, K. B. Huang, C. Y. Ling, "Effect of electro-polymer sizing of carbon fiber on mechanical properties of phenolic resin composites," Trans. Nonferrous Met Soc, Vol. 16, 2006, pp. 457-461. https://doi.org/10.1016/S1003-6326(06)60233-1
  3. 김평기, 장정훈, 김성주, 박종만, 황병선, "미세역학적 시험법과 음향방출을 이용한 Jute 및 Hemp 섬유/폴리프로필렌 복합재료의 내구성 및 계면 평가," 한국복합재료학회지, Vol. 20, No. 3, 2007, pp. 55-62.
  4. X. Wang, D. D. L. Chung, "Improving the bond strength between carbon fiber and cement by fiber surface treatment and polymer addition to cement mix," Cem. Conc. Res., Vol. 26, 1996, pp. 1007-1012. https://doi.org/10.1016/0008-8846(96)00084-1
  5. J. M. Park, S. I. Lee, K. W. Kim, and D. J. Yoon, "Interfacial properties of electrodeposited carbon fibers/epoxy composites using micromechanical technique and nondestructive evaluation," J. Col.l Int. Sci., Vol. 237, 2001, pp. 80-90. https://doi.org/10.1006/jcis.2001.7426
  6. N. Dilsiz and J. P. Wightman, "Effect of acid-base properties of unsized and size carbon fibers on fiber/epoxy matrix adhesion," Colloids and surfaces A, 164, 2000, pp. 325-336 https://doi.org/10.1016/S0927-7757(99)00400-8
  7. J. M. Park, T. Q. Son, J. G. Jung, and B. S. Hwang, "Interfacial evaluation of single Ramie and Kenaf fiber/epoxy resin composites using micromechanical test and nondestructive acoustic emission," Composite Interfaces, 13(2-3), 2006, pp. 105 https://doi.org/10.1163/156855406775997051
  8. L. Yang, K. Setyowati, A. Li, S. Gong, and J. Chen, "Reversible Infrared Actuation of Carbon Nanotube-Liquid Crystalline Elastomer Nanocomposites", Adv. Mater, 9999, 2008, pp. 1-5.
  9. G. R. Filho, "Application of the cuprammonium process (process for the production of regenerated cellulose membranes for hemodialysis) to sugar-cane bagasse", J. Memb. Sci. 82(1-2), 1993, pp. 43-49. https://doi.org/10.1016/0376-7388(93)85091-A
  10. J. H. Kim, and S. R. Yun, "Discovery of Cellulose as a Smart Material", Macromolecules, Vol. 39, 2006, pp. 4202-4206. https://doi.org/10.1021/ma060261e
  11. G. Y. Yun, H. S. Kim, J. H. Kim, K. S. Kim, and C. H. Yang, "Effect of aligned cellulose film to the performance of electro-active paper actuator," Sens. Act. A, 141, 2008, pp. 530-535. https://doi.org/10.1016/j.sna.2007.10.014
  12. J. H. Kim, and S. R. Yun, "Discovery of Cellulose as a Smart Material", Macromolecules, 39, 2006, pp. 4202-4206. https://doi.org/10.1021/ma060261e
  13. B. Claudia, F. Luigi, G. Pietro,. and G. Salvatore, "A method to characterize the deformation of an IPMC sensing membrane", Sens. Act. A, 123-124, 2005, pp. 146-154. https://doi.org/10.1016/j.sna.2005.03.012
  14. J. H. Lee, J. H. Lee, J. D. Nam, H. R. Choi, K. M. Jung, J. W. Jeon, Y. K. Lee, K. J. Kim, and Y. S. Tak, "Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator", Sens. Act. A, 118, 2006, pp. 98 - 106. https://doi.org/10.1016/j.snb.2006.04.014
  15. A. W. Adamson, Physical and Chemistry of Surfaces, 5th ed., Wiley Interscience, New York (1990).