An Improvement for Location Accuracy Algorithm of Moving Indoor Objects

실내 이동 객체의 위치 정확도 개선을 위한 알고리즘

  • 김미경 (한밭대학교 정보통신대학원 정보통신공학과) ;
  • 전현식 (한밭대학교 정보통신전문대학원 전파공학과) ;
  • 염진영 (한밭대학교 정보통신전문대학원 전파공학과) ;
  • 박현주 (한밭대학교 정보통신컴퓨터공학부)
  • Received : 2009.10.09
  • Accepted : 2010.03.04
  • Published : 2010.04.30

Abstract

This paper addresses the problem of moving object localization using Ultra-Wide-Band(UWB) range measurement and the method of location accuracy improvement of the indoor moving object. Unlike outdoor environment, it is difficult to track moving object position due to various noises in indoor. UWB is a radio technology that has attention for localization applications recently. UWB's ranging technique offer the cm accuracy. Its capabilities for data transmission, range accurate estimation and material penetration are suitable technology for indoor positioning application. This paper propose a positioning algorithm of an moving object using UWB ranging technique and particle filter. Existing positioning algorithms eliminate estimation errors and bias after location estimation of mobile object. But in this paper, the proposed algorithm is that eliminate predictable UWB range distance error first and then estimate the moving object's position. This paper shows that the proposed positioning algorithm is more accurate than existing location algorithms through experiments. In this study, the position of moving object is estimated after the triangulation and eliminating the bias and the ranging error from estimation range between three fixed known anchors and a mobile object using UWB. Finally, a particle filter is used to improve on accuracy of mobile object positioning. The results of experiment show that the proposed localization scheme is more precise under the indoor.

본 논문에서는 Ultra-Wide-Band(UWB) 영역 측정을 활용한 이동객체 위치추정과 이동객체 위치정확도를 개선하기 위한 방법을 논한다. 실외환경과는 달리 실내에서는 여러 가지 노이즈로 인해 이동객체의 위치추적이 어렵다. UWB는 최근 위치추적 응용에서 주목을 받고 있는 라디오 기술이다. UWB의 영역측정 기술은 cm 수준의 정확도를 제공한다. UWB의 데이터 전송과 정밀한 영역측정, 물질관통의 특성은 실내위치추적 응용에 적합하다. 본 논문은 UWB 영역 기술과 파티클 필터를 이용한 이동객체의 위치추정 알고리즘을 제안한다. 기존 위치추정 알고리즘들은 이동객체의 위치추정을 한 후에 예상되는 오차와 bias 값을 제거하였다. 그러나 이 논문에서 제안한 알고리즘은 먼저 예상되는 UWB 영역 거리 오차를 제거하고 난 후에 이동객체의 위치를 추정한다. 본 논문에서는 제안 알고리즘이 기존 이동객체의 위치 추정 후 오차를 제거하는 방식보다 위치정밀도가 좋아졌음을 실험을 통하여 보였다. 본 연구에서는 UWB를 이용하여 고정되어 있고 위치를 알고 있는 세 앵커들과 이동객체 간의 추정 거리로부터 bias값과 반복 영역 오차 값을 제거한 후 삼각측량을 하여 이동객체의 위치를 추정하였다. 마지막으로 파티클 필터를 사용하여 이동객체의 위치 정밀도 개선을 한다. 실험 결과는 제안 위치추정 방식이 실내 환경에서 더 정밀함을 보인다.

Keywords

References

  1. Nayef Alsindi and Kaveh Pahlavan. Coorative Localization Bounds for Indoor Ultra-Wideban Wireless Sensor Networks. EURASIP Journal on Advances in Signal Processing Volume 2008, Article ID 852509
  2. J. Gonzalez et al. Mobile robot localization based on Ultra-Wide-Band ranging: A particle filter approach. Journal of Cleaner Production Volues 16, Issue 16, November 2008, Pages 1741-1754 https://doi.org/10.1016/j.jclepro.2007.11.002
  3. S. Roy, J.R. Foerster, and V.S. Somayazulu. Ultrawideband radio design: The promise of high-speed short-range wireless connectivity. IEEE Proc. vol.92, no.2, pp.295-311, 2004. https://doi.org/10.1109/JPROC.2003.821910
  4. Damien B. Jourdan, John J. Deyst, Jr., Moe Z. Win, Nicholas Roy. Monte Carlo Localization in Dense Multipath Environments Using UWB Ranging. IEEE International Conference on Ultra-Wideband, 2005
  5. Greg Welch and Gary Bishop. An Introduction to the Kalman Filter. 95-041 Department of Computer Science University of North Carolina at Chapel Hill, NC 27599-3175 Updated: Monday, July 24, 2006
  6. S.J. Julier and J.K. Uhlmann. A new extension of the Kalman filter to nonlinear systems. In Proc. of AeroSense: The 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls, 1997
  7. R. E. Kalman. A new approach to linear filtering and prediction problems. Trans. of the ASME, Journal of basic engineering, 82:35-45, March 1960. https://doi.org/10.1115/1.3662552
  8. D. Koller and R. Fratkina. Using learning for approximation in stochastic processes. In Proc. of the International Conference on Machine Learning, 1998.
  9. Zhao Dong-ming. Application of Unscented Kalman Filter for Non-linear Estimation in Deformation Monitoring. 3rd IAG 12th FIG Symposium, Baden, May 22-24 2006
  10. E.A.Wan and R. van der Merwe. The unscented Kalman filter for nonlinear estimation. In Proc. of Symposium 2000 on Adaptive Systems for Signal Processing, Communications, and Control, 2000.
  11. Ioannis M. Rekleitis. A Particle Filter Tutorial for Mobile Robot Localization TR-CIM-04-02.
  12. Dieter Fox. Adapting the Sample Size in Particle Filters Through KLD-Sampling. International Journal of Robotics Research, 2003
  13. 이정석, 정완균. 동적 환경에서 파티클 필터 를 이용한 로봇의 강인한 위치추적 알고리 즘. 제2회 한국로봇공학회 하계종합 학술대회 논문집, 2007
  14. M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp, A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions on signal processing, 2002
  15. F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, and P-J. Nordlund. Particle filters for positioning, navigation and tracking. IEEE Transactions on Signal Processing, 2002.
  16. P. Del Moral and L. Miclo. Branching and interacting particle systems approximations of Feynman -Kac formulae with applications to non linear filtering. In Seminaire de Probabilites XXXIV, number 1729 in Lecture Notes in Mathematics. Springer-Verlag, 2000.
  17. A. Doucet, S.J. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3), 2000.
  18. D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo Localization: Efficient position estimation for mobile robots. In Proc. of the National Conference on Artificial Intelligence, 1999.
  19. Mohammed M. Olama, Seddik M. Djouadi, Ioannis G. Papageorgiou, and Charalambos D. Charalambous, Position and Velocity Tracking in Mobile Networks Using Particle and Kalman Filtering With Comparison. IEEE Transaction On Vehicular Technology, Vol. 57, No. 2, March. 2008
  20. D. Fox, S. Thrun, F. Dellaert, and W. Burgard. Particle filters for mobile robot localization.
  21. P. Jensfelt, O. Wijk, D. Austin, and M. Andersson. Feature based condensation for mobile robot localization. In Proc. of the IEEE International Conference on Robotics & Automation, 2000.