폐루프 다중입출력 시스템을 위한 효율적인 그룹별 공간 다중화 기법 설계

A New Efficient Group-wise Spatial Multiplexing Design for Closed-Loop MIMO Systems

  • 문성현 (고려대학교 전기전자전파공학부 무선통신 연구실) ;
  • 이흔철 (삼성전자 종합기술원) ;
  • 김영태 (고려대학교 전기전자전파공학부 무선통신 연구실) ;
  • 이인규 (고려대학교 전기전자전파공학부 무선통신 연구실)
  • 투고 : 2009.09.02
  • 심사 : 2010.03.24
  • 발행 : 2010.04.30

초록

본 논문에서는 폐루프 다중입출력 무선통신 환경을 위한 새로운 공간 다중화 기법을 소개한다. 기존에 제안되 었던 직교 공간 다중화 (OSM; orthogonalized spatial multiplexing) 방식을 확장하여, 우리는 임의의 수의 데이터 스트림을 동시에 전송하기 위한 새로운 방식을 제안한다. 이를 위하여 우리는 데이터 스트림을 두 개 이상의 그룹으로 나누고 수신기에서 블록 대각화 과정을 수행한다. 제안하는 기법은 적은 피드백 정보량을 가지며 심볼 단위의 ML (maximum likelihood) 검출을 통해 복잡도를 최소화한다. 실험 결과를 통해 제안하는 기법은 기존의 설계 기법들에 비하여 비트에러율 관점에서 큰 성능 이득을 제공함을 확인한다. 또한 추가적인 피드백을 통해 수신 그룹의 선택을 최적화함으로써 성능을 더욱 향상시킬 수 있음을 관찰한다.

This paper introduces a new efficient design scheme for spatial multiplexing (SM) systems over closed loop multiple-input multiple-output (MIMO) wireless channels. Extending the orthogonalized spatial multiplexing (OSM) scheme which was developed recently for transmitting two data streams, we propose a new SM scheme where a larger number of data streams can be supported. To achieve this goal, we partition the data streams into several subblocks and execute the block-diagonalization process at the receiver. The proposed scheme still guarantees single-symbol maximum likelihood (ML) detection with small feedback information. Simulation results verify that the proposed scheme achieves a huge performance gain at a bit error rate (BER) of $10^{-4}$ over conventional closed-loop schemes based on minimum mean-square error (MSE) or bit error rate (BER) criterion. We also show that an additional 2.5dB gain can be obtained by optimizing the group selection with extra feedback information.

키워드

참고문헌

  1. G. J. Foschini and M. Gans, "On limits of wireless communication in a fading environment when using multiple antennas", Wireless Personal Communications, Vol.6, pp.311-335, March 1998 https://doi.org/10.1023/A:1008889222784
  2. I. E. Telatar, "Capacity of Multi-antenna Gaussian Channels", Eur. Trans. Telecom., Vol. 10, pp.595-595, November 1999
  3. G. J. Foschini, "Layered Space-Time Architecture for wireless communication in a Fading Environment When Using Multielement antennas", Bell Labs. Tech. Journal, Vol.1, pp.41-59, 1996
  4. H. Lee and I. Lee, "New Approach for Error Compensation in Coded V-BLAST OFDM Systems", IEEE Transactions on Communications, Vol.55, pp.345-355, February 2007 https://doi.org/10.1109/TCOMM.2006.887500
  5. A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications. The Edinburgh Building, Cambridge, UK: Cambridge University Press, 2003
  6. H. Sampath, P. Stoica, and A. Paulraj, "Generalized Linear Precoder and Decoder Design for MIMO Channels Using the Weighted MMSE Criterion", IEEE Transactions on Communications, Vol.49, pp.2198-2206, December 2001 https://doi.org/10.1109/26.974266
  7. A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, "Optimal Designs for Space-Time Linear Precoders and Decoders", IEEE Transactions on Signal Processing, Vol.50, pp.1051-1064, May 2002 https://doi.org/10.1109/78.995062
  8. A. Scaglione, G. B. Giannakis, and S. Barbarossa, "Redundant Filterbank Precoders and Equalizers Part I: Unification and Optimal Designs", IEEE Transactions on Signal Processing, Vol.47, pp.1988-2006, July 1999 https://doi.org/10.1109/78.771047
  9. D. Palomar, J. M. Cioffi, and M. A. Lagunas, "Joint Tx-Rx Beamforming Design for Multicarrier MIMO Channels: A Unified Framework for Convex Optimization", IEEE Transactions on Signal Processing, Vol.51, pp.2381-2401, September 2003 https://doi.org/10.1109/TSP.2003.815393
  10. H. Lee, S.-H. Park, and I. Lee, "Orthogonalized Spatial Multiplexing for Closed-Loop MIMO Systems", IEEE Transactions on Communications, Vol.55, pp.1044-1052, May 2007 https://doi.org/10.1109/TCOMM.2007.894114
  11. Y.-T. Kim, H. Lee, S.-H. Park and I. Lee, "Optimal Precoding for Orthogonalized Spatial Multiplexing in MIMO Wireless Systems", IEEE Journal on Selected Areas in Communications, Vol.26, pp.1556-1566, October 2008 https://doi.org/10.1109/JSAC.2008.081021
  12. M. K. Varanasi, "Group Detection for Synchronous Gaussian Code-Division Multiple- Access Channels", IEEE Transactions on Information Theory, Vol.41, pp.1083-1096, July 1995 https://doi.org/10.1109/18.391251
  13. X. Li, H. Huang, A. Lozano, and G. Foschini, "Reduced Complexity Detection Algorithms for Systems Using Multi-Element Arrays", in Proc. IEEE GLOBECOM '00, pp.1072-1076, November 2000
  14. X. Zhu and R. D. Murch, "Performance Analysis of Maximum Likelihood Detection in a MIMO Antenna System", IEEE Transactions on Communications, Vol.50, pp.187-191, February 2002 https://doi.org/10.1109/26.983313